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Figure 1: An overview of CARING-AI system authoring workflow. CARING-AI enables authors to create contextualized AR
instructions through generative AI. (a) Using CARING-AI, authors first speak their intended instruction content, (b) then
the corresponding step-by-step instructions are generated in text. Authors interact with the interface to modify the textual
instructions and group them. (c) Then the authors provide contextual information to the instructions by walking in the
environment and taking screenshots with the AR HMD. (d) Finally, CARING-AI generates step-by-step humanoid avatar
demonstrations of the AR instruction situated in the context.

ABSTRACT
Context-aware AR instruction enables adaptive and in-situ learning
experiences. However, hardware limitations and expertise require-
ments constrain the creation of such instructions. With recent de-
velopments in Generative Artificial Intelligence (Gen-AI), current
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research tries to tackle these constraints by deploying AI-generated
content (AIGC) in AR applications. However, our preliminary study
with six AR practitioners revealed that the current AIGC lacks
contextual information to adapt to varying application scenarios
and is therefore limited in authoring. To utilize the strong genera-
tive power of GenAI to ease the authoring of AR instruction while
capturing the context, we developed CARING-AI, an AR system
to author context-aware humanoid-avatar-based instructions with
GenAI. By navigating in the environment, users naturally provide
contextual information to generate humanoid-avatar animation
as AR instructions that blend in the context spatially and tempo-
rally. We showcased three application scenarios of CARING-AI:
Asynchronous Instructions, Remote Instructions, and Ad Hoc In-
structions based on a design space of AIGC in AR Instructions.
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With two user studies (N=12), we assessed the system usability of
CARING-AI and demonstrated the easiness and effectiveness of
authoring with Gen-AI.
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1 INTRODUCTION
Augmented Reality (AR) instructions provide an interactive and
immersive learning experience by rendering digital content onto
physical environments and enabling visualization of complex con-
cepts or procedures. With such instructions, end-users explore
various scenarios and practice skills in a more realistic and context-
rich setting. Due to their vast capabilities and their potential to
enhance user engagement [125], facilitate learning [135], and im-
prove performance [24, 43] in various contexts, AR instructions
have gained considerable attention in a range of fields.

In the manual task instruction domains, humanoid avatars are
the preferred options of visualization [13, 22], because they can con-
vey spatial and temporal instructions on complex sequences of tasks,
such as machine tasks, assembly tasks, manual skill learning, and
medical training. Prior works thrived to optimize the authoring of
animated humanoid avatars in AR. Beyond regular animation work-
flows supported by software such as Unity [117], Unreal Engine [35],
or Blender [32], research has proposed diverse methodologies to
overcome the requirement of expertise in both the subject mat-
ter of the instructions and the programming for animation [22]. A
promisingmethod is Authoring/Programming by embodied Demon-
stration (PbD, i.e. creating or editing humanoid animation in AR
environments by physically interacting or demonstrating actions
in the real world). PbD have the advantages such as realistic ani-
mation [57, 126], code-less efficiency [23], engagement [2, 7, 81],
interactivity [50, 122], and learning gain [135] in AR instruction
applications. Despite the benefits and simplicity for the authors,
PbD is still subject to real-world human motion (i.e. the authors
have to physically present and demonstrate) and requires complex
hardware setups and re-setups for Motion Capture (MoCap) such as
cameras or motion sensors. Therefore, authoring with PbD systems
is limited in varying contexts ad hoc.

The development of Generative Artificial Intelligence (Gen-AI)
has brought AI-generated content (AIGC) into the discussion of
authoring AR instructions [45], considering its potential to elimi-
nate expertise barriers and hardware requirements. With this rapid
growth of Gen-AI power, content creation in various modalities can
be democratized to higher levels [12, 77]. Users are enabled to gener-
ate desired content by simply prompting via intuitivemodalities (e.g.

textual conversation [9, 56, 95, 96] and reference image [94, 98, 99]).
Many ongoing research and discussions have identified opportuni-
ties for deploying AIGC in AR for its power of abstracting human
knowledge and a wide range of I/O modalities [12, 113].

In pursuit of the design space of AIGC in AR instructions, re-
search is faced with the challenge that Gen-AI lacks the contex-
tual and background information to be deployed into real-world
applications [77]. In the scope of AR instruction, contextual infor-
mation is a critical metaphor, where spatial-temporal information
of the instruction is to be blended in the context of the users. A
taxonomy of context-awareness in AR instruction, that many prior
works [38, 92, 120] converge towards, encompasses three key as-
pects: the human, environment, and system.

Building on this existing knowledge, we aim to fill the gap be-
tween state-of-the-art Gen-AI and context-aware AR humanoid
avatar instructions. Specifically, our research is motivated to explore
(1) What context information does AI-generated humanoid avatar
animation lack for AR instructions? (section 3) (2) How can this
missing contextual information be delivered to Gen-AI? (section 4)
and (3) What insights can we gain from our designs to further foster
developments towards the use of AIGC in AR? (section 9)

From a preliminary expert interview, we summarize the design
goals for naturally providing contextual information to AIGC in-
corporating user interactions in the authoring process. We then
present CARING-AI, an AR system enabling authoring contextu-
alized humanoid avatar animation for AR instructions. Given a
textual description of the task to instruct, CARING-AI generates
step-by-step textual instructions that can be modified by the users
and further generates motion that animates humanoid avatars as
the visual cues in the instructions. After giving the textual instruc-
tions to animate, authors navigate and scan the environment with
an ARHead-Mounted Device (HMD). Then, CARING-AI temporally
and spatially adapts the AI-generated instructions to the human,
environment, and system context of the task.

Our contributions are four-fold:

• A code-less and Mocap-free workflow for authoring ani-
mated humanoid avatar instructions in AR with Gen-AI,
contextually aware of the human, environment, and system.
• A diffusion-model-based algorithm to temporally smooth
sequences of individually generated humanoid motions.
• An AR interface for authoring AR instructions from textual
input describing the tasks, avatars’ trajectory, and FOV.
• A series of studies evaluating the performance of our system
and assessing the efficiency of creating AR animation with
Gen-AI compared with a baseline PbD method.

2 RELATEDWORK
2.1 AR Instruction
AR instruction refers to the use of AR technology for instructional
purposes, such as visualizing complex concepts, exploring various
scenarios, practicing skills, and providing real-time feedback.

Our use of the AR instructionmetaphor is grounded in real-world
applications in diverse domains including assembly [22, 33, 64],
education [34, 49, 71, 80, 89, 119], manufacturing [91], logistics [78],
IoT [111, 129] and domestic applications [10, 40, 54, 123, 123].

https://doi.org/10.1145/3706598.3713348
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Our scope focuses on the visualization techniques of animated
humanoid avatars in authoring AR content for tasks that convey
spatio-temporal instructions to the end-users. Through our wide
literature review of AR instructions, we conclude that the infor-
mation conveyed by AR instructions can be categorized into three
types:

Spatial information refers to the geographical or spatially-
related data such as the location of certain objects or the occurrence
of interactions. Spatial information is usually visualized by 3D
models [34, 41, 48, 130], overlaying data [40, 54], and visual cues
such as arrows and lines [10, 64, 112].

Temporal information refers to the time-related data such as
the order, synchronization, or timing of the movement or occur-
rence in the AR. Temporal information can be visualized through
textual descriptions of order or procedural [36], animation [33, 89],
video [11], or sequential overlays [112].

Spatio-temporal information refers to the information that
encompasses both spatial and temporal descriptions of an event, an
interaction, or movement in AR, explicitly addressing the change of
spatial data in a temporal interval. Spatio-temporal information can
be visualized in AR by combining spatial and temporal methodolo-
gies. When spatio-temporal information depicts a human motion or
their interaction with the environment, it is better visualized in the
animated humanoid avatars [14, 22, 46, 121], where the end-users
of the content can learn through following the avatars.

2.2 Authoring AR Content
Authoring AR content refers to the process where designers explic-
itly assign spatial behaviors of the virtual components to the physi-
cal world [93]. Programming-based authoring tools enable authors
to create AR content through programming languages and mathe-
matical modeling [32, 35, 117]. Authoring by programming creates
a precise AR experience, however, at the cost of requiring authors’
expertise in both the subject matter and programming. Moreover,
it isolates the authors from the target environment where the AR
applications emerge, depriving the spatio-temporal connection to
the target environment of the authors.

To tackle the challenges above, prior arts propose the concept
of immersive authoring, where the author can create AR content
by interacting with both the virtual components and the physi-
cal world [66]. To immersively author humanoid avatar anima-
tion, prior work has applied methods based on embodied demon-
stration to authoring. Through embodied methods, designers can
create human movement and interactions with objects by simply
demonstrating [14, 22, 23, 73, 100, 120, 121]. However, authoring
through demonstration is subject to the hardware needed for Mo-
cap [22, 121]. In addition, it requires the author to be physically
interacting with the environment, which is often not possible or
even needed. For example, the environment may be remote for the
author, the environment itself is virtual, the concept that is being
demonstrated is not physically plausible or imaginary, or costly for
various reasons.

To overcome the barriers of expertise requirement, hardware
limitation, and physical interactions, researchers have investigated
the uses of AI-generated content (AIGC) in AR applications. Early
works are limited by the modalities and generating power of Gen-AI

and, therefore, focus on only a bounded area. For example, Genera-
tive Adversarial Networks (GAN) are capable of generating images
based on a given text or image input. It has been deployed in vi-
sual tasks such as fashion design [109, 133], rendering a realistic
shadow [69], reconstructing an occluded human body [21] or virtual
objects [132] or generating new virtual objects [59, 114].

With the recent development in Gen-AI technology, methodolo-
gies have enabled content generation in a wider range of modal-
ities (e.g. text-to-text by Models such as Generative Pre-trained
Transformer (GPT) and its successors [9, 56, 95, 96], T5 [97], and
BERT [27], text-to-image by large vision models [1, 94, 98, 99, 107]
and by Diffusion Models [42, 87, 104, 108, 115], text-to-3D [72],
image-to-text [94], etc.) with faster and better-generated quality [28].

The uniqueness of Gen-AI arises from the fact that it can gener-
ate novel content, rather than inferencing and acting on existing
data or knowledge bases and choosing existing content via an
if-else rule database [37].

The recent developments that have demonstrated the out-of-
ordinary capabilities of Gen-AI have inspired and enabled our work
to embed AIGC into AR applications. We present related ongoing
research (i.e. non-peer-reviewed reports) as well as some recently
published papers to differentiate the key aspects of our approach.
To the best of our knowledge, the capabilities we have demon-
strated in AIGC for AR are new and are to be still explored from
both the design space and applications viewpoints. Hu et al. [45]
explored the design space of AIGC + AR applications through an
interview, and concluded with several discussions regarding the
user, environment, and function of the AR application. Lv et al. [77]
concluded that context is a key consideration in giving prompts to
Large Language Models (LLM). Soliman et al. [116] envisioned us-
ing Gen-AI in ARGC for its wide range of modalities. Chen et al. [18]
implemented an LLM-based AR system that incorporates spatial
and contextualized information to generate textual instruction in
the AR application. However, these prior works deal with textual
instructions, while ours focuses on humanoid animation to provide
spatio-temporal instructions with the avatar. A recent survey by
Chamola et al. [16] investigated the capabilities of existing Gen-
AI methodologies and summarized the characteristics of possible
AIGC + Metaverse applications via clustering the methodologies.
Their research pointed out a key insight towards the prospect of
Gen-AI in Metaverse: generating 3D content for Metaverse appli-
cations (AR in our scope) via Gen-AI needs the incorporation of
contextual information. This insight is also aligned with the re-
cent works such as those of Huang et al. [47] and Shi et al. [113].
They recognized the missing "contextual memory" and designed
a knowledge interactive agent to identify the missing knowledge
and pass it to the Gen-AI model to ground the model in contextual
applications.

Motivated by the prior works, we position our work to fill the
gap between the AI-generated humanoid avatar animation and AR
instructional applications, by contextualizing the generated content
via author interactions.

2.3 Context-aware AR Applications
The metaphor of context-awareness has been a significant area of
interest among both researchers and practitioners. Lee et al. [65]
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define context awareness as the ability of a system to apply the pat-
terns given the constraints imposed by the real world. An established
taxonomy [38, 92] categorizes context-awareness into three types:

• Human Context, where the AR systems recognize the hu-
mans (users and non-users), take into consideration their
profiles [46, 61], status [8, 10, 110, 112], or their interac-
tions [25, 29, 71, 76, 131] and adjust the AR components
accordingly.
• Environmental Context, where the AR systems perceive
the surroundings of the users and understand the presence
and absence of physical objects [19, 40, 54, 58, 123], temporal
primitives [105, 106], or digital representations of the sce-
nario [20, 25, 36, 63, 68, 83, 93, 110, 121], and adjust their
components correspondingly.
• System Context, where the AR systems are aware of their
input/output [61] or their own states [29, 112, 131] in the
realities, and adapt to these contexts.

In the scope of AR instructions, all three categories of context
awareness are essential. With human-context awareness, systems
are capable of adapting the instructional content according to the
users’ performance to maximize the learning gain [46]. Besides,
understanding human motion enables the system actively to de-
cide which steps in the instructions are best to be visualized to the
users [29]. The location of the visualization in AR also relies on the
human context [25, 71, 112, 131]. On the other hand, environmen-
tal context also plays a key role in AR instructions. For instance,
instructing hand-object interactions in AR requires the overlays of
3D models of the objects to be aligned with the physical world for
visual cues [22, 40]. The environment also possesses rich semantic
information that determines the content of the instruction [121].
Moreover, the system context helps to decide the procedures in AR
instructions by recognizing the states of the instructions and timely
transiting to the subsequent ones [22].

Grounded on the prior works and the three categories above, we
discuss how we can contextualize the AIGC in AR instructions.

3 PRELEMINARY STUDY AND DESIGN
RATIONALE

3.1 Preliminary Study
To better understand AI-generative content (AIGC) for AR instruc-
tions, we conducted a study with six participants (P1-P6, four males
and two females) who have prior experience in creating AR appli-
cations for procedural instruction. All Participants were academic
researchers from different disciplines: Electrical and Computer En-
gineering (3), Computer Science (2) and Mechanical Engineering
(1). The mean age of participants was 29.5 and all of them had at
least 4 years of experience in creating AR/VR/MR applications.

Procedure:We showed a seven-step humanoid avatar animation
instruction task to the participant, generated by the state-of-the-art
Generative AI algorithm GMD [55]. The animation is generated
from the textual input of "cutting an apple" and contains the follow-
ing steps: 1) Go to the cutting board, 2) Take the apple with the left
hand, 3) Put the apple on the cutting board, 4) Go towards the knife
area, 5) Take the knife with the right hand, 6) Go to the cutting
board, 7) Cut the apple with a knife.

Figure 2: Problems of AI-generated humanoid avatar anima-
tion identified in the preliminary study (a) the offset between
the generated content and the context, i.e. the interaction
is not spatially aligned with the object, (b) the temporal in-
consistency, i.e. the generated motion is not temporally con-
nected, and (c) the unfitting visualization extend, i.e. the
generated avatars are not of the best scale to convey the in-
structions (full-body v.s. half-body v.s. hand-only)

After participants watched the content, three authors inter-
viewed them for 30 to 60 minutes with inductive and open-ended
questions. In addition to their opinion on the quality of the shown
animation, we asked general questions about the challenges of
creating an AR avatar tutorial, the quality of the content, and the
potential gap between the characteristics of demonstrations in AR
instructions and AIGC. The interviews were recorded, transcribed,
and coded by the same three authors. Each author reviewed the
transcripts and summarized an initial set of design goals. Three
authors merged to discuss each other’s design goals and concluded
a refined version by eliminating redundant points and including
as many exclusive points as possible. The analysis provides the
following insights and the Design Goals (DG) listed below:

DG 1) Spatially Aware Content The need for AIGC to be
grounded in the real world for AR applications is evident. The AIGC
should be aware of the user’s real-world environment which in-
cludes objects, their locations, and surfaces. All participants pointed
out that spatial information is important to transfer virtual content
into the physical world for AR applications (P1-P6). Additionally,
the AIGC should provide avatar demonstrations subject to the users’
vicinity where specific interactions and objects are located (P1, P2,
P5). "The tutorial should include an avatar demonstration of manipu-
lating a virtual object, when real and virtual are overlaid for a better
understanding of the content." - P2

DG 2) Transition Continuity The AIGC should be smooth
when transitioning from one event or interaction to another. All
the usersmentioned that the content shownwas not continuous and
there were sudden breaks between the interactions. "All the actions
present were looking separate and there was no connection between
the actions" - P1. Participants also mentioned that it was difficult
to create continuous and smooth AR avatar instructions with the
currently available technology (P2, P4). "In my case, I created step-
by-step small steps for creating tutorials by avatar demonstrations of
assembly" - P2.

DG 3) Scale of Content The AIGC should include different
scales of demonstration adaptive to the different scales of the con-
tent in terms of the movement, focusing on different parts of the
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Figure 3: Our consideration of the design space of AIGC in AR instructions is composed of two dimensions: context and content.
An AR instruction can be either temporal or spatial based on the contextual information it conveys, either local or global,
based on the scale of the content it contains.

instructions. This can be achieved by giving users the freedom to
decide whether they prefer to see the whole body (third-person
view) or just the hands (First-person view) of an avatar(P1, P5).
Moreover, this will also decide the scale of the avatar and virtual
objects present in the scene (P2, P3). "Author should have the free-
dom to watch the content in the visualization method they preferred."
- P3.

DG 4) Flexibility in Modifications of the Content The AR
tutorials should contain flexibility in editing, recreating, or remov-
ing the content (P1, P4, P5), which is not enabled by the Gen-AI
models themselves without designated interactions with the user.
Participants from their prior experience also mentioned that modi-
fication in AR tutorials is time-consuming and requires a lot more
effort (P1, P6). "I created an AR avatar tutorial for a mechanical
assembly task and it took me a lot of time to make the content" - P6.
Participants acknowledge the use of the AI model in creating the
tutorials because of less coding effort (P1). "It amazes me that these
tutorials are just created from the text. This will make AR content
creation easy and fast" - P1

3.2 Design Space
From prior works [6, 17, 44, 51] and our study findings, we con-
clude that the current methods of creating AR instructions from
AI-Generated Content (AIGC) are sophisticated and cumbersome.
The four aforementioned design goals are key to grounding AIGC
in AR instructions. Most participants agreed that Gen-AI is a pow-
erful tool that can be used to create AR avatar motions, per intuitive
and efficient interaction techniques designated to utilize the gen-
erative power (DG 4). We also found that context and content are

the most important aspects for AIGC to be used in creating avatar
instructions for AR applications. From the context side, the Gen-AI
model should understand the physical space and their elements
which includes recognizing specific locations, objects, landmarks,
and their relations (DG 1). The content can be either an event or
interaction and should be presented temporally consistent to the
user (DG 1). Moreover, the scale of the content also matters when
it comes to the efficiency of the instructions (DG 3). To this end,
we identify context and content as two essential dimensions of the
design space of AIGC in AR instructions, as shown in Figure 3.
The first dimension is the context, which can be either spatial or
temporal:

• Spatial context: It refers to the information related to the
physical environment which involves location, objects, and
their interactions.
• Temporal context: It refers to the synchronization and
timing of information conveyed by the AIGC.

The second dimension is the content in AR, which can be either
global or local:

• Local content: It refers to the specific content of the instruc-
tion constrained in the users’ immediate vicinity, which is
to be depicted in low-level details in the AIGC instruction.
• Global content: It refers to the broader perspective of the
content relating to the overall scope of the task, describing
the high-level goals of steps.

We further explore the AIGC in AR instructions located in each
of the quadrants divided by the two dimensions above.
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Figure 4: The overall pipeline of the CARING-AI system. Users start by generating textual instructions by speech or text. These
instructions will be further grounded in the context of the users by scanning the environment. With context, instructions are
used to generate humanoid avatar motion to demonstrate the instructions, blended in AR.

Local-spatial instructions explain users’ closest vicinity infor-
mation about the objects, locations, their semantic information, and
relation with each other (DG 1). Such instructions locate and align
the 3D object models and humanoid avatars with the corresponding
physical objects or areas.

Local-temporal instructions reveal the timely order of inter-
actions between the avatars and the vicinity. Such instructions
illustrate step-by-step how-to for each interaction or action with
temporal consistent transitioning from one to another (DG 2).

Global-spatial: instructions depict the approximatewhereabouts
of the objects, areas, or interactions that are positioned outside the
local vicinity. In contrast to local-spatial instructions, global-spatial
instructions posit the content approximately in a space rather than
detailing the exact location in the space (DG1).

Global-temporal: instructions guide the end-users from one
space into another and change the vicinity of the end-users with
temporally consistent transitions (DG2).

We built the CARING-AI system based on the design space de-
composition above, addressing the design goals that we have de-
rived.

4 CARING-AI SYSTEM
We developed the CARING-AI system that allows authors to gener-
ate and contextualize avatar animation instructions in AR. Based on
the discussion above, we derived the following features in our sys-
tem: 1) Allowing authors to create textual instruction with editable
features (DG 4), 2) Scanning the environment to get spatial context
information (DG 1), and 3) An authoring interface for visualization
and editing of the generated content (DG 2, 3, 4). In this section,
we discuss the implementations of the algorithms and modules of
CARING-AI and the present our interface.

4.1 System Overview
CARING-AI consists of the following steps as shown in Figure 4:

1) Refining textual instructions. The user provides a task
description to ChatGPT [88], which returns the step-by-step textual
instructions to perform the task. The user can then further modify
or correct the generated textual instructions.

2) Scanning the environment. The user moves in the physical
environment to scan the objects, locations, and areas, as well as
record their trajectory, which will be used to provide spatial context
information to the system.

3) Generating avatar instructions. The system takes refined
textual input from Step 1 to generate avatar instructions based
on the design space discussed in subsection 3.2. The generated
instructions are also grounded by the context information provided
in Step 2.

4) Visualization and Editing. The user can view and edit the
AI-generated instructions.

4.2 Textual Instructions
This module allows users to refine textual instructions for a task
using a large language model (LLM), namely ChatGPT API [88].
Given a user-intended task to instruct, CARING-AI prompts [128]
the ChatGPT API to refine the user description of the task into a
sequence of step-by-step predefined action labels, which are pre-
sented in the HumanML3D dataset [39] (a large computer vision
benchmark dataset), by specifically asking "detailed step-by-step
instructions of the [task name]". The purpose of this step is to align
the terminology of the textual instructions with the available action
labels from the dataset to ensure precise generation by the model.

After the refined instructions are generated, users can make
necessary adjustments, add more details, or remove information to
ensure the instructions align with their specific needs (for example
if the object in the textual instruction is not present in the environ-
ment). The finalized instructions will then be used to generate the
avatar motion for the task.

4.3 Scanning the Physical Space
CARING-AI utilizes HoloLens2 AR-HMD [79] as the front-end
platform. In order to capture the spatial context of the environment,
such as objects, their locations, and semantic meaning as shown
in Figure 5, the user navigates and scans the environment with the
HMD and starts the Scan mode in the interface. The user walks
around from and to contexts where actions happen, and scans
the entire required environment. Upon entering the Scan mode,
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Figure 5: Ourmethodology for obtaining the contextual infor-
mation. For global information, users walk from one location
to another to provide trajectories (a). For spatial information,
users look at the local objects and take screenshots (b, c). This
contextual information will be used to generate humanoid
avatarmotions that are aware of the spatial context for global
and local content.

CARING-AI records the surroundings by taking RGB images of
the HMD FOV and starts recording the global trajectory of the
user (built-in SLAM). The RGB images are passed to an object
detection algorithm [101] (30ms per image) to get the semantic
classification and relative location of the objects. The RGB images
and the object information are further passed to the state-of-the-art
6 DoF algorithm, MegaPose 6D [62] to obtain the 6 DoF information
of the objects. Then CARING-AI overlays virtual objects onto the
real object based on 6DoF information. This information of objects
is then used to generate avatar motion with detected and overlayed
objects.

4.4 Generating the motion
After getting the textual instruction and spatial information from
the user, we generate the avatar motion utilizing a Gen-AI model.
Specifically, we modified the state-of-the-art text-to-motion AI
model (MDM [118]), to generate the global-spatial-context-aware
motion (subsubsection 4.4.1), local-spatial-context-aware motion
(subsubsection 4.4.2), and temporal-context-aware motion (subsub-
section 4.4.3), covering our design space of AR avatar instructions
shown in Figure 3.

4.4.1 Global-Spatial-Context-Aware Generation. As discussed in
DG 1, it is key to contextualizing the generated animation for AR
instructions. To tackle this challenge, we exploit the idea of Guided
Motion Diffusion (GMD) [55]. On top of other motion generation

Kicking Dancing

Running and Stopping Going Downstairs

(a) (b)

(d)(c)

Figure 6: Some examples of our motion generation models.
The motion can be local (a) or global (b, c, d, i.e. from one
place to another)

diffusion models, GMD can generate humanoid motion data, using
text descriptions and location cues as the conditions to guide the
generation. However, GMD does not support the generation of se-
quences of multiple actions. To address this challenge, we modified
the architecture of the Motion DiffusionModel (MDM) [118] (which
is also used by GMD as their base model to include trajectories) as
shown in Figure 7 and applied the GMD method to generate the
humanoid motion with trajectory guidance. We use the trajectories
recorded in the Scanmode as the conditions to the diffusion model
to provide global spatial information to the generated motion.

Figure 7: The comparison of the diffusion training overview
is between the Motion Diffusion Model (MDM) (left) and ours
(right). The MDM conditions motion frames by placing 𝑧𝑡𝑘
at the first location, while our conditions motion frames by
adding 𝑧𝑘 to each motion embedding. For simplicity, we have
omitted the random masking of the text embedding used for
classifier-free diffusion guidance.

4.4.2 Local-Spatial-Context-Aware Generation. CARING-AI is also
capable of conveying local spatial information in the instructions, by
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generating the motion of the hand with 3D virtual objects overlaid
on the physical objects using another motion diffusion model for
hand and object interaction [15]. As described in subsection 4.3, in
the Scan mode, CARING-AI obtains the location information of
the objects in the physical environment and overlays 3D models
of them in AR. To make sure that the generated avatar interacts
with the objects correctly, we ask the users to exit the Scan mode
at the end of their trajectory while looking (with the HMD) at the
objects that they intend to interact with at the step. In this way, we
guarantee to record the object 6 DoF information relative to the
last global location of the trajectory.

4.4.3 Temporal-Context-Aware Generation. As discussed in DG 2,
temporal smoothness is key to the sense of continuity in AR instruc-
tions. The original MDMmodel is designed to generate only a single
action by conditioning the instruction into the whole sequence at
once. Generated motions exhibit discontinuity in transition seg-
ments because they are produced independently, without incorpo-
rating information about the start and end of each instruction as
shown in Figure 2 (b).

To address this challenge, we modified MDM to condition in-
structions to each frame, allowing them to generate multiple action
sequences jointly. We visualized the architecture and modification
in Figure 7. For the sampling process, we generate multiple actions
by adding distinct text conditions, represented by 𝑧𝑘 , to the frames.
For example, for three actions each 60 frames long, we applied
different 𝑧𝑘 values across the ranges: 1–60, 61–120, and 121–180
frames.

However, due to the limitation of the frame length of the training
dataset, the quality of the motion drops empirically when the frame
number exceeds 196. Further, we designed a temporal smoothing
algorithm to generate an unlimited length of smooth avatar motion
and applied it after the generation of motions. As illustrated in
Figure 8, the temporal smoothing function, (denoted as 𝑓 ) aims
to mitigate the discontinuity among the transitional segments of
motion (𝐾1 and 𝐾2, where 𝐾 represent two transition segments).
Each of the transition segments comprises a length of 𝐿 frames. We
also set the weight function 𝛼𝑡 to define the ratio for combining the
two transition segments. For this purpose, we employed the shifted
sigmoid function for 𝛼𝑡 , given by 𝛼 (𝑡) = 1

1+𝑒−(𝑡−(𝐿/2) , to serve as our
smoothing mechanism. Consequently, the resultant mixed frames,
represented as 𝐾𝑡 , can be expressed as

𝐾𝑡 = 𝑓 (𝐾1
𝑡 , 𝐾

2
𝑡 , 𝛼𝑡 ) = 𝛼𝑡𝐾1

𝑡 + (1 − 𝛼𝑡 )𝐾2
𝑡 . (1)

Then, to keep the length of the generation action length, we ex-
tended its length twice with linear interpolation sampling.

�̂�𝑡 = �̃�𝑥0 +
�̃�𝑥1 − �̃�𝑥0
𝑥1 − 𝑥0

(𝑥 − 𝑥0), (2)

where 𝑥 is 𝐿−1
2𝐿−1 𝑡 , 𝑥0 is ⌊

𝐿−1
2𝐿−1 𝑡⌋, 𝑥1 is ⌈

𝐿−1
2𝐿−1 𝑡⌉, ⌈·⌉ and ⌊·⌋ indicate

the ceiling and the floor operator, respectively.

4.5 AR Interface
To achieve DG 3 and DG 4, We introduce an AR interface that
includes all the functions discussed above and additional functions

Algorithm 1 Temporal smoothing
INPUT: 𝐾1

𝑡 , 𝐾
2
𝑡 ⊲ Transition segments

𝛼𝑡 ⊲ Temporal smoothing function
OUTPUT: �̂� ⊲ New transition segments
1: for 𝑡 = 0, 1, ..., 𝐿 − 1 do ⊲ Temporal smoothing
2: 𝐾𝑡 = 𝛼𝑡𝐾𝑡 + (1 − 𝛼𝑡 )𝐾𝑡
3: end for
4: for 𝑡 = 0, 1, ..., 2𝐿 − 1 do ⊲ Linear interpolation
5: 𝑥 ← 𝐿−1

2𝐿−1 𝑡, 𝑥0 ← ⌊
𝐿−1
2𝐿−1 𝑡⌋, 𝑥1 ← ⌈

𝐿−1
2𝐿−1 𝑡⌉

6:

7: �̂�𝑡 = �̃�𝑥0 +
�̃�𝑥1−�̃�𝑥0
𝑥1−𝑥0 (𝑥 − 𝑥0)

8:
9: end for

Figure 8: The illustration of the temporal smoothing algo-
rithm of CARING-AI

such as visualization, editing, and modifying the content. The au-
thoring system for CARING-AI consists of four modes: 1) Task
mode to get users the step-by-step instructions, 2) Scan mode to
ground the instructions in the context, 3) Author mode to design
and edit textual instruction and avatar motion content, and 4) View
mode to examine the authored AR avatar instructions. The AR
menu is always present in the user’s view on the left hand so that
users can easily access the all functions of the current mode and
also switch between them.

As shown in Figure 9 (a), the user first starts by providing the
task description using a voice command by clicking the New Task
button to enter the Task mode. The user speaks to the system to
specify their task, then the system generates textual instructions
shown in the instruction panel Figure 9 (c). When the users select
one step from the panel, they can insert new instruction steps,
delete the selected ones, or modify them.
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(a) (b)

(c)

Figure 9: AR User Interface of CARING-AI. In (a), users can
start authoring a new task or start contextualizing the in-
structions. In (c), they can see the generated textual instruc-
tions and select a single or multiple of the instructions. In (b),
they can choose to view the humanoid avatar animation (Play
button), change the scale of the humanoid avatar (Change
Scale button), modify the textual instruction by speech (Mod-
ify Instruction button), insert new instructions (Insert Previ-
ous and Insert Next buttons), and delete the selected instruc-
tions (Delete button).

Then, the user selects and groups several steps that happen in a
global context (i.e., steps that happen at the same location in the
space, for example, in Figure 9 (c), Step2: go to the kitchen sink and
Step3: wash the apple belong to the same global context), with the
selected instructions highlighted in yellow. After selection, the user
clicks the Contextualize button and enters Scan mode to scan the
physical environment. In the Scan mode, the user simply walks
in their physical space to mark the global location for the cur-
rent group (e.g., in Figure 9, the user walks to the kitchen sink)
and ends contextualizing the current group by taking a screenshot
while looking at the contextual environment (e.g. looking at the
sink with the apple and knife visible in the scenario). Upon object
detection, CARING-AI then overlays 3D virtual objects on the cor-
responding physical objects which users can see and adjust the 6
DoF with built-in freehand interactions. Iteratively, the user groups
and contextualizes the rest of the instructions. The contextualized
instruction panels are highlighted in green while the users are still
allowed to revisit and edit.

Upon the completion of contextualizing all steps, the user enters
the Author mode. The user can click theModify Instruction button
to modify the instruction and regenerate animation for a specific
step, or click the Change Scale button to change the visualization
scale of the selected step. The available scales of the visualization
are full-body avatars and hand-object avatars (i.e. only the hands,
the forearms, and the objects are rendered).

Meanwhile, the user can enter View mode by clicking the Play
button. This mode visualizes the currently selected instruction by

rendering the generated context-aware avatar animation in the
HMD.

4.6 Software and Hardware Implementation
We implement CARING-AI using Hololens 2 [79] with built-in
SLAM tracking for AR experiences. CARING-AI interface was de-
veloped in Unity 3D on a local PC (Intel core i7-9700K CPU, 26
GHz, 128 GB RAM). During the scanning mode, we use a resolution
of 1280 x 720 for the RGB image. The images are then processed
in a local PC for object detection and the 6 DoF estimation algo-
rithm for overlaying the virtual 3D on the real object. We used the
Mixed Reality toolkit (MRTK) for the interactions of hands with the
virtual objects and the interface. For 6 DoF of the object, we used
the pre-trained MegaPose6D [62] model, which can estimate 6 DoF
of objects in the wild. For object detection, we used the detection
model [101] pre-trained on ImageNet [26]. We fine-tuned the object
detection algorithm which is used in finding the spatial context
for the content. The training of object detection was performed on
objects dataset collected for used cases and user study purposes.
For each object class, we collected 600 images. The 3D scans of the
objects were also collected and stored in the database for the 6DoF
algorithm and virtual object overlays in physical. As mentioned in
section 4.4, we used the pre-trained Guided Diffusion Model [55] as
the motion generation model on the HumanML3D [39] dataset. The
action classes from the dataset are further used in the user study
and for the demonstration. One batch of motion generation takes
time of 36 seconds, with one NVIDIA RTX A6000 GPU.

5 QUANTITATIVE EVALUATION
In this section, we assess the efficacy of our context-aware gen-
erative AI approach in real-life scenarios by comparing it with
a baseline (GMD [55]). As a preliminary step, we evaluated our
modified diffusion model algorithm Figure 7 compared to GMD
quantitatively. We chose GMD as our baseline for comparison be-
cause GMD is a state-of-the-art model based on MDM. This study
assesses the modified model’s performance in generating humanoid
animation, which is the backend algorithm of our system.

5.1 Evaluation
5.1.1 Baseline. We used a pre-trained model of GMD to compare
our algorithm. GMD [55] is pre-trained with the HumanML3D
dataset, which is annotated human motion data. The dataset has
22 joints |J | = 22 following the skeleton representation of the
HumanML3D dataset [39]. The HumanML3D dataset encompasses
14,616 motions, paired with 44,970 descriptions that are comprised
of 5,371 unique words. The combined duration of all motions is
28.59 hours. On average, each motion spans 7.1 seconds, and each
description contains 12 words.

5.1.2 Metrics. To validate the performance of our model, we con-
structed 10 practical scenarios Table 1 using both the baseline
method [55] and our context-aware approach. Our evaluation has
been done in two dimensions: spatial and temporal context aware-
ness. For assessing temporal context awareness, we quantified the
motion discontinuity between consecutive instructions. A height-
ened awareness of the temporal context by the AI should result in
reduced discontinuities in the generated instructions. The motion
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Table 1: Task and instructions

Task Instructions
Charging a Phone Get the charger; Insert the cable into the phone; Plug the charger into an outlet
Turning on the TV Pick up the remote; Point it at the TV; Press the power button
Closing a Window Approach the window; Grasp the handle or sash; Push to close
Starting a Computer Sit in front of the computer; Press the power button; Wait for it to boot up.
Exercising Crawl; Run; Band Push; Crawl to Stand
Reading a Book Walk to the bookshelf; Choose a book; Go to the living room; Sit on the couch or chair;
Closing a Window Approach the window; Grasp the handle or sash; Push or slide to close
Eating an apple Approach to the table; Pick up the remote; Eat the apple; Move back; Turn around; Leave the kitchen
Use a 3D printer Pick up PVA; Go to printer; Attach Filament to printer; Start printer
Making Tea Boil the water; Place a cup on the table; Pick the pot; Pour boiling water into the cup.

distance across frames was computed following the [3]. We calcu-
late the transition distance, which calculates the joint distance of
two transition frames.

𝑑temporal =
1

|K ||J |
∑︁
𝐾∈K

∑︁
𝐽 ∈J
| |𝐽𝐾𝑙𝑎𝑠𝑡 − 𝐽𝐾 𝑓 𝑖𝑟𝑠𝑡 | |2, (3)

where K is the set of the two consecutive indices of transition
frames (𝐾𝑙𝑎𝑠𝑡 , 𝐾 𝑓 𝑖𝑟𝑠𝑡 ) ∈ N2, which is composed of the last frame of
the previous action 𝐾𝑙𝑎𝑠𝑡 and the first of the next action 𝐾first. The
number of transitions is equal to substituting one from the number
of instructions |K | = |A − 1|. J is the set of joints, containing the
3D location of joints at the transition, 𝐽𝐾∗ ∈ R3 as elements. The
human skeleton data we used has 22 joints |J | = 22 following the
skeleton representation of the HumanML3D dataset.

In terms of spatial context awareness, we gauged the proximity
between the avatar and the object specified in the instruction. The
absence of spatial context often results in instructions that position
the avatar at a considerable distance from the target object, poten-
tially leading to user confusion. We employed the mean Euclidean
distance to measure the spatial alignment within the frames of
interest.

𝑑spatial =
1
|T |

∑︁
𝑡 ∈T
| |𝐽𝑥𝑦𝑡 −𝑂𝑡 | |2, (4)

where 𝐽𝑥𝑦𝑡 ,𝑂𝑡 ∈ R2 indicates the 2D X, Y coordinates of the root
joint and target keypoint at the 𝑡-th frame, respectively. T is the
set of frames that is spatially conditioned by target keypoint 𝑂𝑡 .

5.2 Procedure
To evaluate our developed algorithm performance, we choose 10
practical scenarios Table 1 commonly found in real-world tasks.
These tasks have more than two instructions and are performed
at varied locations covering our design space which makes them
suitable for evaluating our algorithm and comparing it with the
baseline. To get the instructions for the task, three authors indi-
vidually provided the task description to ChatGPT and noted the
instructions. Then the authors discuss to finalize the steps of the
instructions. Additionally, one of them wears hololens to get the
spatial context for the algorithms. After generating the text instruc-
tions, we input them into a Text-to-Motion generator, resulting
in motion instructions. To evaluate our approach, we compared
our motion instructions with those from the GMD[55], one of the

Method Transition distance↓ (m) Absolute distance↓ (m)
GMD 0.15 0.08
Ours 0.03 0.09

Table 2: Transition Distance is the comparison of the discon-
tinuity with and without temporal smoothing methods. The
lower the better. Absolute distance is the average distance
between the avatar and the key points. Distance under 0.1 m
is considered as plausible motion [55]

state-of-the-art algorithms in Text-to-Motion generation. For a con-
sistent comparison, we kept the length of each instruction the same
in 90 frames.

5.3 Results and Analysis
In this section, we detail the results of our preliminary evaluations.
We highlight the transitional gap between two consecutive frames
measured in meters (𝑚). As illustrated in Table 2, our approach
ensures smooth frame transitions. GMD [55] exhibits a transition
distance of 0.15𝑚 when frames are simply concatenated. In con-
trast, our method substantially decreases this transition distance
to 0.03𝑚 (𝑝 < 0.05), eliminating any motion discontinuity. Addi-
tionally, Table 2 showcases the spatial alignment. The distance is
determined between the avatar’s center and the guided keypoint,
assuming an avatar height of 175𝑐𝑚. Our method produces results
closely aligned with GMD, generating plausible motion with an
error margin under 0.1𝑚 (𝑝 < 0.05) [55], while also capable of pro-
ducing smooth and varied actions in one seamless operation. The
Exercising task shows the highest spatial error because it contains
the instruction to run, which represents the most sudden motion
among all instructions. Meanwhile, the Starting a Computer task
has the lowest error due to its fewer movements. We observed that
the quality of hand motion generated by both GMD and our method
is subpar. Instructions involving hand-object interactions especially
exhibit awkward hand gestures. For instance, the pickup motion
doesn’t adequately display grabbing gestures.

6 USER STUDY 1: USABILITY
We conducted a user study to qualitatively evaluate the usability
of our system. We qualitatively evaluated all the steps used in our
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system as well as the quality of the human motion generation.
We invited 12 users (10 males and 2 females) from the technical
university. All of them have prior experience in AR/VR applications
using tablets, AR screens, and head-mounted devices. CARING-AI
is designed to help both experts and non-experts create human
avatar motion. The users are from graduate and undergraduate
programs and their age ranges from 19 to 30. None of the users
have used our system and have had no knowledge about it before.
The entire study took one hour - two hours and each user was
compensated with a 15 USD e-gift card. The study was conducted
in an indoor environment. After the user arrived, we provided a
brief overview of the study. Then the users were asked to sign the
consent form only when they were comfortable in performing the
user study. After that, we explained the entire CARING-AI system
workflow and each function in the UI. Out of 12 users, 5 users had
prior experience with developing or using Hololens. The users were
given enough time to get comfortable with the CARING-AI system
before the study was officially started. Also, some of the users with
no experience were provided with a built-in Hololens tutorial to
learn the basics. As our study focus was on the usability of the
system and user experience on the generated content, we asked
the users to complete a System Usability Scale (SUS) and a 5-point
scale Likert-type questionnaire followed by 20-minute post-session
conversation-type interviews to provide subjective feedback about
CARING-AI.

6.1 Procedure
We evaluated the performance of our system and let users generate
avatar motions for the tasks Cutting an Apple. The study took
place in a kitchen environment. The task was chosen because it
involves multiple steps and different locations. The task is suitable
for evaluating context-generated content and other system compo-
nents like interface. The users were tasked to generate step-by-step
instructions for the task from ChatGPT. The most common steps
found in the task as shown in Figure 10 are

(1) Walking to the cut board (Global, Temporal and Spatial),
(2) Pick up an apple on the table (Local, Temporal and Spatial),
(3) Pick up the knife (Local, Temporal and Spatial),
(4) Cut the apple (Local, Temporal and Spatial),
(5) Put down the knife (Local, Temporal and Spatial),
(6) Eat the apple (Local, Temporal),
(7) Move back (Global, Temporal),
(8) Turn around (Global, Temporal),
(9) and Leave the kitchen (Global, Temporal and Spatial).

Then the user scans the environment and takes the screenshots
at different locations. After that user aligns the virtual objects on
the real object if they are not properly aligned by the system. And
finally, the user uses the CARING-AI interface to generate the
motions.

6.2 Results and Analysis
We analyzed responses to a 5-point scale Likert-type questionnaire,
SUS, and transcribed the interview from the user.

Walking to the cutboard Pick up the apple Pick up the knife

Cut the apple Put down the knife Eat the apple

Figure 10: Examples of humanoid animation generated in
User Study 1.

6.2.1 Textual Instructions. We qualitatively evaluate textual step-
by-step instruction generated from ChatGPT. In general, users pre-
ferred the step-by-step instructions generated from the ChatGPT
to be relevant to the task. "P1: I think I don’t need to modify the in-
structions. They were correct and right for the task.". However, some
users modified a few steps little for their instructions. Many users
acknowledge the visualization of a graph representation of step-by-
step instructions and agree that the interactions with the graph are
easy to use and simple to follow (Q1: AVG = 4.08, SD = 1.00). "P5:
The process of creating the instructions was easy and quick."

6.2.2 Context Aware Instruction by Avatar. Through post-study
interviews and designated Likert-scale questionnaires with the
users, we qualitatively evaluate the context in the content generated
by CARING-AI during the user study. Many of the users stated that
the avatar was performing the actions with the object at the correct
location (Q7: AVG = 4.42, SD = 0.51). As a piece of evidence, P3
commented in the interview "P3: I was actually surprised by the way
Avatar went to the exact position and performed the activity." Another
user mentioned " P2: I liked that I could see the avatar move towards
the apple and the fluid and connected motion". The majority of the
users were satisfied by the actions performed by the avatar using
the virtual objects (Q4: AVG = 4.25, SD = 0.97). As P9 commented
in the interview on "P9: The action demonstrated by the avatar was
with the right object." However, a few users raised concerns about
accurate avatar hand and virtual object interactions, such as P12 "P12:
It is not clear to me why the hand was not grabbing the object and
it automatically sticks to the hand." We discuss this limitation in
more detail in section 9. Users acknowledge that the motion of the
avatar from one place to another looks real (Q5: AVG = 3,58, SD
= 1.31), such as P11 "P11: I can’t believe that the avatar movement
exactly looks as if a real human is walking. I should say this is too
cool." Users found a smooth transition of the avatar motion between
the instructions (Q8: AVG = 4.67, SD = 0.49). P8 pointed out that
the transition by our smoothing algorithm made the animations
seamless and the breaks between animations hard to identify, "P8:
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Figure 11: Likert-type questionnaire results from User Study 1.

It was hard for me to draw the boundary between the instructions
when I was looking at the avatar motion."

6.2.3 Overall System Usability and Utility. The overall system Lik-
ert scale results are shown in Figure 11. Context from the user is
the foundation of our generated animation and most of the users
were satisfied and comfortable with taking screenshots during the
scanning of the environment process (Q6: AVG= 4.00, SD = 1.04), as
P8 commented "P8: I didn’t find any difficulty in moving around and
taking screen pictures." Further, users also found the alignment of
real and virtual objects was accurate. P4 commented that the accu-
rate alignment contributed to their overall experience "P4: I think
the virtual model was approximately over the top of the real for many
objects and the visualization being a 3D rendering definitely helps
my experience". The CARING-AI system interface was appreciated
by the users. The positive feedback from the users on the usability
of the interface is mainly attributed to the easiness of using it, as
P2 commented: "P2: In my opinion, I find the UI very straightforward
and easy to use." Moreover, users find it easy to switch between
full-body pose and only hand (Q2: AVG= 4.08, SD = 1.00). The final
avatar motion instruction generated from CARING-AI received a
positive response from the user after watching the final generation
of instructions (Q12: AVG= 4.42, SD = 0.51).

Regarding utility, many users reported positive regarding uti-
lizing CARING-AI in creating AR instruction tutorials of human
demonstration. P7 with previous experience of authoring AR in-
structions in Unity positively commented on the efficiency when
utilizing CARING-AI "P7: I have developed an AR instruction by
coding in Unity and it took me several days to make it. I wish this
thing was developed earlier so that I could have used it." Some users
needed more features to display such as text, and icons for object

movement directions along with just demonstrations, such as P9
"P9: For the base level, it is okay but I think it would have been better
if your system provided visual cues showing the movement of the
object" We discuss the limitation in more detail in section 9. For the
system usability, the users agree that the system is usable (SUS: M =
83.21 out of 100 and SD = 7.34). A score above 70 is practically con-
sidered "Good" usability and an 85-and-beyond score is considered
"excellent" as mentioned in [4, 5].

7 USER STUDY 2: INTERACTION
To evaluate the interaction design of our system compared wt
the baseline programming by Demonstration, we conducted an
additional within-subject comparative user study (N=12) between
CARING-AI and a baseline PbDmethod. The purpose of this study is
to assess the novel interaction proposed in CARING-AI and compare
the user feedback on the interactions with that from the existing
methods (PbD). To make a reasonable PbD baseline, we followed
a similar approach [102] and built our setup, where the humanoid
animation is captured by a third-person-view RGB camera.

The participants (8 males and 4 females) are six novices and six
experts in developing AR applications. They were recruited and
compensated as in User Study 1. Users were asked to author AR
instructions with both CARING-AI and PbD, counterbalanced by
6 participants authoring with CARING-AI first followed by PbD,
and the other 6 participants with PbD and then CARING-AI. The
entire study took 1 to 2 hours. We followed the same protocol for
explaining our system as in User Study 1. To quantitatively evaluate
our system, We asked the users to fill out NASA TLX [85] and a
five-point Likert-type questionnaire (Figure 17). This questionnaire
is designed to collect qualitative evaluations of the users on the
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Figure 12: AR animation generated by users using CARING-AI in User Study 2.

efficiency and accuracy of both authoring methods (Q2-5), as well
as the quality of the final output (Q1). Additionally, a 15-minute
semi-structured interview was conducted for each participant. In
post-processing of the study data, we calculated error rates during
interactions and time spent in creating animation.

7.1 Procedure
The user study was performed in a living room and users were
asked to perform three tasks: organizing the living room, watering
a plant, and hammering a nail to a door. We specifically chose
tasks that require human motion that can be guided by humanoid
avatar animation in AR. Also, all chosen tasks involved hand-object
interactions with different objects and took place at various global
locations, which are:

(1) Walk to the sofa. Place the water bottle on the sofa. Pick up
the book.
Walk to the chair. Put down the book on the chair.

(2) Pick up the mug. Walk to the plant. Pour the water into the
plant.

(3) Walk to the door. Pick up the hammer. Hammer the nail on
the door.

With CARING-AI, the users first scanned the environment by
moving around and taking screenshots of the locations where local
actions were to happen. After that, users aligned the virtual object
with their real counterparts. Then, users generated the final ani-
mated instructions following the workflow of CARING-AI as in
User Study 1. Until satisfied, the users could regenerate or adjust
the animation with CARING-AI. The examples of generated AR
animation with CARING-AI in this study are shown in Figure 12.

With PbD, the users first manually aligned the virtual objects
with their real counterparts. Then, users wrote down the instruc-
tions for each task and performed the task in the environment.
During this process, the user’s actions were recorded by four cam-
era setups, each capturing one global location in the tasks (sofa,
chair, plant, and door). We followed prior work [48] to calibrate the
camera setups and align them with the AR HMD to obtain accurate
camera coordinates. The recorded videos are then passed into a
video-to-3D algorithm [84] to convert the demonstrated motion
into presentable 3D humanoid animation assets. To execute the
video-to-3D algorithm, users are first required to segment both the
human and the object using the segmentation module from [60].
The users then situated the animation assets in AR with an HMD,
by moving the assets to align with the physical environment. Until

satisfied, the users could redo the tasks and adjust the animation
assets. The examples of generated AR animation with PbD in this
study are shown in Figure 13.

For fair comparison of the avatar quality, both PbD and CARING-
AI used the full SMPL-X [90] model as the humanoid avatars as
shown in Figure 12 and Figure 13 (c)-1.

7.2 Results and Analysis
We obtained the data from the user study, including (1) the Error
Rates (Wemanually counted the number of times each usermodified
the instruction, re-performed a task, or re-adjusted the animation
assets), (2) the time performance in minutes taken by each user to
complete the authoring tasks, and (3) NASA TLX scores. We then
confirmed if the normality assumption is followed in each collected
data group with a Shapiro-Wilk test, followed by a paired t-test if
normally distributed, or a Wilcoxon Signed-Rank test otherwise.
We then analyzed and discussed the results as follows.

7.2.1 Task Load: CARING-AI v.s. PbD. Since only data from Effort
scores are normally distributed in both PbD and CARING-AI setups
(𝑝𝑃𝑏𝐷 = 0.051, 𝑝𝑂𝑢𝑟𝑠 = 0.159, henceforth, we conducted paired
t-tests for Effort and Wilcoxon Signed-Rank tests for the rest, as
shown in Figure 14. The results showed that users experienced
significantly less Mental Demand with CARING-AI (𝑀𝑂𝑢𝑟𝑠 = 2.666,
𝑆𝐷𝑂𝑢𝑟𝑠 = 0.651, 𝑀𝑃𝑏𝐷 = 3.250, 𝑆𝐷𝑃𝑏𝐷 = 0.965, 𝑝 = 0.025,𝑧 =

−2.242) compared to PbD. Also, users reported significantly higher
Physical Demand (𝑀𝑂𝑢𝑟𝑠 = 2.416, 𝑆𝐷𝑂𝑢𝑟𝑠 = 0.514,𝑀𝑃𝑏𝐷 = 3.333,
𝑆𝐷𝑃𝑏𝐷 = 1.073, 𝑝 = 0.046, 𝑧 = −2.001) in PbD than in CARING-AI.
The less Mental Demand with CARING-AI can be attributed to a
shorter workflow with no consideration of the camera position
(as we will also discuss in the next subsubsection), while the less
Physical Demand with CARING-AI can be attributed to the physical
easiness of creating animation with only text instructions compared
to that of demonstrating the actions to the cameras. Additionally,
users felt more confident in their performance in completing tasks
with CARING-AI (𝑀𝑂𝑢𝑟𝑠 = 3.833,𝑆𝐷𝑂𝑢𝑟𝑠 = 0.834,𝑀𝑃𝑏𝐷 = 2.916,
𝑆𝐷𝑃𝑏𝐷 = 0.996,𝑝 = 0.026,𝑧 = −2.222). The better performance
scores can relate to the less Error Rates and shorter task time in
the next subsubsection. No significant differences were observed
in Temporal Demand (𝑧 = −0.560,𝑊 = 14 > 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 3) or
Frustration (𝑧 = −0.280,𝑊 = 16 >𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 3) between the two
systems.
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Figure 13: AR animation generated by users using our PbD baselines in User Study 2. (a) users demonstrating the task, (b) the
generated 3D animation assets from the camera captures, and (c) the users viewing and adjusting the 3D animation assets with
the AR HMD. The differences between the assets in (b) and (c) are due to rendering methods.

Figure 14: NASA TLX Scores, where * denotes 𝑝 < 0.05

7.2.2 Error Rate and Time Performance. The collected data was nor-
mally distributed in both Error Rate (𝑝𝑃𝑏𝐷 = 0.515, 𝑝𝑂𝑢𝑟𝑠 = 0.242)
and Time Performance (𝑝𝑃𝑏𝐷 = 0.487, 𝑝𝑂𝑢𝑟𝑠 = 0.987). The reported
Error Rates were high in PbD as compared to CARING-AI as shown
in Figure 16 (𝑝 = 0.034). During the study, we mainly observed
that some participants re-did the tasks with PbD multiple times
because the cameras had been occluded from a proper view to gen-
erate accurate animation. In practical scenarios, this problem can
worsen since the camera setup has to be relocated and re-calibrated
to tackle the occlusion problem of PbD authoring. Redoing the
demonstration also added much more mental and physical demand
as we showed in the NASA TLX results. For the total time taken,
users finished all tasks quicker with CARING-AI compared to PbD
(𝑝 = 0.001). This was because performing the actions took longer as
compared to adjusting the text or the animation itself. Also, more
Error Rates meant more numbers of times re-demonstrating.

7.2.3 Subjective Ratings. We analyzed the questionnaire results
from users’ feedback and conducted interviews with the partici-
pants (Figure 17). After confirming the normality of the rating data,

Figure 15: Average Error Rates Calculated in User Study 2,
with CARING-AI and PbD

Figure 16: Average Time Spent in Authoring Task, with
CARING-AI and PbD

we further performed paired t-tests to check the significance of
the comparison. Users preferred the quality of the final animation
instruction generated from CARING-AI(Q1: 𝑝 < 0.05), as P7 com-
mented in the interview "I like the overall animation quality from
the first system (Ours)" (P7). Users found editing animation through
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text much easier than demonstrating (Q4 𝑝 < 0.05). "When I create
the instruction and I don’t like it, I would prefer some easier way to
edit like the second system (Ours) than performing the task again"
(P2). This aligns with the results from NASA TLX and quantitative
evaluations. The easiness of authoring with CARING-AI can also be
attributed to the smoother learning curve of text-to-animation mod-
els as compared to PbD or demonstration-to-animation methods
as pointed out in [113]. Users reported better feedback regarding
hand-object rendering in CARING-AI (Q5 𝑝 < 0.05) as compared to
PbD, attributed to the error in detecting hand-object interaction in
PbD, which results in the degenerated user experience as described
by P3 "I don’t know but the hand was not actually grabbing the object
in the first system (PbD) but in the second system It was much better"
(P3). The quality of hand-object rendering was partially influenced
by the occlusion during the study. Also, the rendered interactions
in PbD were not situated in the environment correctly, and users
reported that they had adjusted the animations more in the final
stage. We found no significant difference in controlling the avatar
(Q2) and editing the textual instruction (Q3).

8 DISCUSSION
8.1 Contextual Awareness in CARING-AI
Context plays a vital role in AR applications [121]. Despite the
potential of Gen-AI in creating 3D content [118], a key limitation
lies in its lack of contextual awareness in AR as identified in the
preliminary study. One of the core design goals of CARING-AI
is to bring context awareness to AI-generated humanoid avatar
instructions in AR. With the evaluation of the CARING-AI (sec-
tion 6 and section 5), we look back at the conclusion drawn in
the preliminary study and seek the reason why context-awareness
is necessary in AR instruction, i.e., What does context-awareness
bring to AR instructions? We highlighted how users in the study
emphasized the importance of precise positioning and action per-
formance in humanoid avatar animations (subsubsection 6.2.2) and
demonstrated how CARING-AI effectively addressed the need for
accuracy in both positioning and animation. Our findings indicate
that users, as the authors of the instructions, they are aware of the
context. The actions that they intend or anticipate the receivers of
the instructions to take are based on the context, i.e., the authors
give instructions based on the context. "P3: When I wanna instruct
somebody to do something, I want them to know exactly the objects
and actions. This is very important when in a complex task where
students can pick the wrong stuff and act anyway and make mistakes."
The author’s context-awareness is the essence of instructions, as
many prior works pointed out as "the prior to function as an in-
struction" [127] or "the flexibility and accommodation to external
constraints for designing an instruction" [82]. In short, there are
specific "where" and "what" the authors intend to convey in the
instructions. By preserving and representing the author’s context
awareness, CARING-AI enables the core functions of instructions,
which were previously missing in AI-generated humanoid avatar
animation.

8.2 CARING-AI Excels in Instructing: How?
Given the capability of CARING-AI preserving and representing
context-awareness in AI-generated humanoid avatar animation.

We have witnessed the preference and positive ratings of the users
for both our full-body avatar and hand-object avatar animation. Yet,
we noticed some comments from the users addressing the necessity
of using humanoid avatar instructions in some scenarios. Some
users mentioned inconvenience brought by the use of humanoid
avatars. "P8: The avatar moving backward was not visible to me.
When the movement [of the avatar] is out of my vision, I think there
are better ways to tell me to look at the avatar or tell me what to
do." In addition to "where" and "what", "how" the instructions can
be conveyed to the users is also important. As discovered in prior
works [13, 46], in AR tutoring, learners prefer half-body avatars
for spatial interactions (interactions that require large spatial navi-
gation before proceeding), full-body avatars for body-coordinated
interactions (interactions that require coordination among learners’
body, hands, and eyes). We further bring hand-object avatars for lo-
cal interactions in CARING-AI. CARING AI changes form of avatar
based on scale of the task. However, some of the users mentioned
that avatar forms should be based on designation and details of the
actions. Furthermore, as AR instructions are not limited to the form
of humanoid avatars, we conclude that non-avatar AR can also be
included in the CARING-AI pipeline as a means of visualization.
As P8 commented, non-avatar AR instructions excel avatar instruc-
tions in the cases where no particular body gesture is required or
the visualization of humanoid avatars is not visible to the users.
This conclusion highly aligns with the findings of prior study [13].

8.3 Other Modalities of AI-generated
Instructions

Humanoid avatar motion along with additional cues helps in learn-
ing content [46]. As previously discussed, to further develop CARING-
AI into a comprehensive AR instruction system, we envisioned fu-
ture versions with other AI-generated modalities such as (1) visual
cues [67, 70], e.g. arrows, bounding boxes, lines, etc., (2) contextual-
ized textual instructions [18], (3) images [72, 94], (4) audio [74], and
(5) videos [31]. We argue that our design space of AR instructions
and the pipeline of CARING-AI apply to the other modalities of AR
cues and instructions as well, since the spatial locations/placements,
as well as the temporality of the cues, are key design considerations
in the prior works referenced above, and can be situated through
CARING-AI’s pipeline, where the authors walk through the context
and assign the cues by taking contextual snapshots.

8.4 Authoring with CARING-AI v.s. PbD
Authoring by real-time demonstration or embodied often requires
bulky hardware setup, which limits the mobility of the end-users
due to the size of the devices [121]. In our User Study 2, a camera
setup has to be built for the baseline PbD method, while CARING-
AI does not require complex hardware setup and allows users to
create instructions without programming knowledge and physical
presence. CARING-AI can help users generate instructions even at
remote locations without performing the actions and movements
(subsection A.3). As P7 commented on the efficiency in creating AR
instructions "this system, I think, can become very effective in creating
remote instructing like without even physically present.". Instructions
from PbD are also tied to the environment or context in which
users performed demonstrations to create the content. On the other
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Figure 17: Subjective Likert-scale Ratings of the easiness, animation quality, and interactions of CARING-AI and PbD

hand, instructions generated from CARING-AI can be effectively
adapted to various environments settings because of context-aware
modeling, concluded from our observations of the user feedback
on the quality of the generated content as shown in Figure 17. As
the results suggest, the CARING-AI pipeline performs better than
PbD in generating instructions with fewer mistakes and faster and
with less cognitive load.

9 LIMITATIONS, AND FUTUREWORK
In this section, we discuss the limitations of CARING-AI identified
from development, user study, and the analysis of the study pro-
cess. Deriving from such, we propose future directions that can
contribute to the topic of GenAI in AR instructions.

9.1 Object Representation and Interactions
One of the limitations of CARING-AI lies in its ability to handle
complex hand-object interactions.We apply an additional module to
render hand-object interactions, which focuses solely on visualizing
the hand and object rather than the entire body. However, this
module tackles only rigid objects and does not render high-fidelity
hand-object interaction, particularly limiting the use cases requiring
complexity and dexterity in manual tasks. Complex interactions
involve hands engagingwith objects that are articulated, segmented,
foldable, or deformable, whereas the objects in our system are
strictly rigid. Thus, the system cannot represent actions that involve
changing the shape or form of an object such as tying a shoelace or
folding a cloth. Nevertheless, such constraints are attributed to the
limitation of the Gen-AI algorithms applied in the pipeline, while
the overall workflow of CARING-AI remains effective in capturing
and presenting the context information to the generated content.
While algorithmic development remains relatively unexplored in
the AI field, we foresee this limitation can be addressed in future
work by incorporating more generalized state-of-the-art algorithms

and datasets, such as those introduced in [30, 75, 134], to enable high
fidelity rendering of hand-object interactions in AR instruction.

Lastly, CARING-AI currently does not support object-object in-
teractions. This limitation stems from the aforementioned chal-
lenges in hand pose plausibility and rigid object representations.
Without the ability to depict detailed hand-object interactions and
object articulations, representing interactions between multiple
objects becomes unfeasible. However, we believe that exploring
object-object interactions offers a promising direction for future re-
search, providing a richer and more comprehensive understanding
of interactions in virtual environments.

9.2 Generalizability
Like all other deep-learning-based methodologies, the performance
of our motion generation model is subject to the training pro-
cess [52, 53]. Nevertheless, the model we used has been pre-trained
on a large-scale motion dataset [39] containing 14,616 motions and
44,970 descriptions composed of 5,371 distinct words, which fulfills
the requirement for our use cases and study. In our study, we em-
phasize the HCI design and the workflow bridging AR applications
and Gen-AI, rather than contributing to the existing algorithms
of Gen-AI by trying to outperform them. To this end, we further
argue that the generalizability (more types) and scalability (more
detailed motion) of this method are promising. Firstly, prior works
have demonstrated the capabilities of large generative models on
large-scale datasets [103]. We envision the scale of this method
will be further improved upon datasets with wider ranges of action
labels being fed into the Gen-AI model (e.g. task-specific motion
datasets in each domain). Secondly, the size and complexity of the
model in our implementation are constrained by our hardware
condition, particularly the GPU sizes. With a better (empirically
more complex) model, we expect the quality and the details of the
generated content to improve.

Put simply, our methodology focuses on the HCI design for
AIGC in AR, maintains its applicability with the current ideology
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of Gen-AI, and is generalizable as long as the plugged-in Gen-AI is
generalizable.

In addition to the generalizability of the algorithm, we also ac-
knowledge that the findings of the formative studies are derived
from academic researchers, which could be further refined and
expanded with diverse perspectives from industrial practitioners.
Moreover, the avatars used in our paper are sex-neutral, however,
unclothed human avatar representations from [90], which can be
replaced with inclusive and realistically rendered avatars for more
user-friendly and family-friendly use.

9.3 Software and Hardware Constraints
One of the major constraints imposed by our hardware condition
is the time performance. It has been reported in subsection 4.6
that generating a batch of motion takes 36 seconds (i.e. anything
between 1 and the batch size takes 36 seconds). Even though 36
seconds of latency seems beyond the cost of real-time performance,
batch processing guarantees that users can render their desired
avatar instructions once altogether, given a batch size of 128 in
our setup, which is, in all cases of our study, more than the users’
expectation of the number of interactions in the demonstration.
Moreover, to address this problem of computational cost in the
future, we anticipate methodologies such as utilizing cloud services
for data transferring and computation, parallel programming for
the generation, and usage of better GPUs (high computational).

Another one of our hardware constraints comes from our im-
plementation platform, Hololens 2. With a field of view (FOV) of
(43°×29°), users cannot experience a fully immersive AR environ-
ment as content might not be visible outside this boxed area. For
AR authoring and consuming, this poses a challenge. Users have to
be acutely aware of this constraint to ensure that critical interactive
elements or information are positioned within this limited space.
Under the circumstances when the humanoid avatar is close to the
users, motion outside the FOV is not visible. This problem may
not influence the quality of the generated content itself but induce
biases in the evaluation of the user study, such as more negative
feedback due to the jeopardized user experience.

10 CONCLUSION
In this work, we present CARING-AI, an AR authoring system
that enables users to author AR instructions with contextualized
humanoid avatar movement generated by Gen-AI. We first dis-
cussed with experts in AR authoring in a preliminary interview,
aiming to identify the gap between current AI-generated humanoid
avatars and AR instruction applications. Based on the insights
gained from the discussion, we further characterized the design
space for context-aware AR instructions from AI-generated con-
tent with two dimensions, namely context (spatial or temporal) and
content (local or global). We then proposed a workflow for contex-
tualizing AI-generated AR instruction with three major steps: (1)
generating and modifying textual instructions, (2) contextualizing
by traversing and scanning the environment, and (3) generating and
smoothing humanoid avatar animation.We further showcased three
application scenarios for authoring AR instructions with CARING-
AI: asynchronous, remote, and ad hoc instruction. We evaluated the

performance of CARING-AI with a preliminary quantitative evalua-
tion focusing on themodel performance and the quality of the AIGC,
followed by a user study evaluating the qualitative performance
and overall usability of CARING-AI as an AR authoring system
through complimentary qualitative user feedback. Eventually, we
discuss the limitations of the current version of CARING-AI and
further envision the opportunities and promising future research
directions our work has revealed. We believe our work is capable
of opening up and contributing to the discussion of the broad topic
of AIGC in AR applications.
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on Engagement and Performance in Augmented Reality Learning Environments.
IEEE Transactions on Visualization and Computer Graphics 28, 11 (2022), 3737–
3747.

[126] Florian Weidner, Gerd Boettcher, Stephanie Arevalo Arboleda, Chenyao Diao,
Luljeta Sinani, Christian Kunert, Christoph Gerhardt, Wolfgang Broll, and
Alexander Raake. 2023. A Systematic Review on the Visualization of Avatars and
Agents in AR & VR displayed using Head-Mounted Displays. IEEE Transactions
on Visualization and Computer Graphics (2023).

[127] AndrÉ M Weitzenhoffer. 1974. When is an “instruction” an “instruction”?
International Journal of Clinical and Experimental Hypnosis 22, 3 (1974), 258–
269.

[128] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023.
A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv
preprint arXiv:2302.11382 (2023).

[129] Hui Ye and Hongbo Fu. 2022. ProGesAR: Mobile AR Prototyping for Proxemic
and Gestural Interactions with Real-world IoT Enhanced Spaces. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems. 1–14.

[130] Hui Ye, Jiaye Leng, Chufeng Xiao, Lili Wang, and Hongbo Fu. 2023. ProObjAR:
Prototyping Spatially-aware Interactions of Smart Objects with AR-HMD. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
1–15.

[131] Xuyue Yin, Xiumin Fan, Wenmin Zhu, and Rui Liu. 2018. Synchronous AR as-
sembly assistance and monitoring system based on ego-centric vision. Assembly
Automation 39, 1 (2018), 1–16.

[132] Kyongsik Yun, Thomas Lu, and Edward Chow. 2018. Occluded object recon-
struction for first responders with augmented reality glasses using conditional
generative adversarial networks. In Pattern Recognition and Tracking XXIX,
Vol. 10649. SPIE, 225–231.

[133] Zhenjie Zhao and Xiaojuan Ma. 2018. A Compensation Method of Two-Stage
Image Generation for Human-AI Collaborated In-Situ Fashion Design in Aug-
mented Reality Environment. In 2018 IEEE International Conference on Artificial
Intelligence and Virtual Reality (AIVR). 76–83. https://doi.org/10.1109/AIVR.
2018.00018

[134] Juntian Zheng, Qingyuan Zheng, Lixing Fang, Yun Liu, and Li Yi. 2023. CAMS:
CAnonicalizedManipulation Spaces for Category-Level Functional Hand-Object
Manipulation Synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 585–594.

[135] Zhengzhe Zhu, Ziyi Liu, Youyou Zhang, Lijun Zhu, Joey Huang, Ana M Vil-
lanueva, Xun Qian, Kylie Peppler, and Karthik Ramani. 2023. LearnIoTVR: An
End-to-End Virtual Reality Environment Providing Authentic Learning Experi-
ences for Internet of Things. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. 1–17.

https://arxiv.org/abs/2205.11487
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://doi.org/10.1007/978-3-031-27166-3_1
https://arxiv.org/abs/1503.03585
https://unity.com/
https://unity.com/
https://doi.org/10.1109/AIVR.2018.00018
https://doi.org/10.1109/AIVR.2018.00018


CARING-AI CHI ’25, April 26-May 1, 2025, Yokohama, Japan

A APPLICATION SCENARIO
With CARING-AI, users are enabled to author context-aware hu-
manoid avatar animation for AR instructions that can be adaptively
deployed into various application scenarios (AS). Our primary goal
of presenting the AS is to demonstrate that CARING-AI can cap-
ture and convey context information identified in design space.
Specifically, we showcase three major scenarios where CARING-AI
demonstrates its ability to grant code-less and Mocap-free author-
ing (AS-1, AS-2, and AS-3), create content that is to be deployed
in different time primitives or via different platforms (AS-1, AS-3),
and adapt to varying contexts (AS-2).

A.1 AS-1: Asynchronous Instructions

Figure 18: CARING-AI for authoring asynchronous Instruc-
tions. A senior lab researcher (a) leaves an AR memo for
his colleague on how to use a 3D printer. He simply walks
around the printing lab using CARING-AI to contextualize
the textual instructions, capturing the location of the PVA
filament and the printer. (b) The corresponding humanoid
animation is generated according to the step-by-step instruc-
tions. CARING-AI is capable of handling AR instructions
of diverse content and context, namely spatial or temporal
context, and local or global content.

Asynchronous instructions are the most common case in the ap-
plications of AR instructions, where the authors create the content
prior to the consumption of the AR experiences [18, 22]. CARING-
AI naturally supports asynchronous instructions and situates AI-
generated humanoid avatar animation into the physical world con-
textually. Here, we showcase a scenario in a research lab, where
a senior researcher (Tom, the author) would like to leave an AR
memo for his junior colleague (Jerry, the consumer) to instruct him
on how to operate a 3D printer. Tom creates and modifies the text
instructions with the help of CARING-AI, then provides context to
the system by walking up to the locations and taking snapshots of
the environment as shown in Figure 18. He informs Jerry to get the
printing materials and then go to a specific 3D printer to print a
product. Later, when Jerry arrives in the laboratory, he follows the
step-by-step AR memo from Tom to start working on the product.

Figure 19: CARING-AI for Ad Hoc AR Instructions. For the
same task (e.g. installing a router), the instructions vary
across diverse contexts. By using CARING-AI, users simply
need to scan the environment to provide contextual infor-
mation to the system. CARING-AI will generate humanoid
avatar animation that blends into different physical realities.

A.2 AS-2: Ad Hoc Instruction Creation
CARING-AI enables authoring AR instructions through Gen-AI
by contextualizing the instructions. In this scenario, we showcase
how CARING-AI enables authoring ad hoc instructions in changing
contexts with simplified user interactions. As a technician from
the lab, Tom would like to teach his colleague how to install a
router as shown in Figure 19. The instructions are fairly simple and
easy to understand. However, the detail of the steps varies across
environments, e.g. in the office, the bedroom, or the living room,
because the locations of the router and the outlet vary. With the
same protocol to be visualized, Tom simply has to contextualize the
protocol in different places, assigning the locations of the objects
by traversing the rooms. As a result, Tom authors different avatar
animations for diverse contexts with the same instruction protocol.

Place B: Perceiving Instructions in AR

(a) (b)

(c) (d)

(e)
Place A: Contextualizing Instructions in VR

Figure 20: CARING-AI’s capability of authoring Remote In-
structions. In this scenario, a delivery man is asking for the
destinations of the packages. (a) A lab member is giving con-
textual information through a pre-scanned scenario in VR.
(b) We built a mock-up VR scenario to record the locations
and correspond them back into the physical reality. Once the
instructions are contextualized, the delivery man can view
the humanoid instructions on delivering the packages (c, d).
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Figure 21: We showcase more examples of humanoid animation generated from our backend algorithm. Specifically, the
animations generated are guided by a textual description of themotion, renderedwith humanoid avatars (in our implementation,
SMPL [90]). Each animation clip presents a short sequence of human motion and represents a step in a given AR instruction.

A.3 AS-3: Remote Instructions
In this scenario, CARING-AI is deployed in a remote instruction task.
We showcased how CARING-AI can adapt to context information
of diverse modalities and liberate the authors from demonstrating
in the actual physical environment. Toodles, the deliverywoman of
the building, arrives in the lab with new devices to be allocated Fig-
ure 20 (c). Noticing no one is in the lab, Toodles contacts Jerry,
asking about the allocation of the devices. Jerry, who is not present
at the lab, confirms the devices and their checkout points (i.e. where
they are to be placed). Jerry then enters a pre-scanned point-cloud
map of the lab in Virtual Reality (VR), where he authors the instruc-
tions in VR using CARING-AI by navigating the map and taking
screenshots Figure 20 (a, b) (We built a mock-up VR program to
record Jerry’s locations in VR and correspond them to the physi-
cal reality). CARING-AI generates humanoid avatar instructions
according to the contextual information provided. The authored
AR instructions are then sent to Toodles, who follows the avatar
demonstrations to allocate the devices to different locations Fig-
ure 20 (d, e). In this case, we see that CARING-AI is capable of

authoring synchronous remote instructions. It also showcases the
possibilities of authoring AR experiences in VR with CARING-AI
with aligned contextual information between physical reality and
VR. The alignment of context is subsumed here as described and
inspired by many prior works [86, 93, 124]

B MORE GENERATED EXAMPLES
In this section, we showcase more examples generated from our
backend diffusion model as shown in Figure 21 and situated hu-
manoid animation by CARING-AI through our pipeline as shown
in Figure 22. Given a textual prompt, our motion diffusion model
can generate high-fidelity humanoid avatar motion. With the user-
provided context, specifically object location and motion trajectory,
the CARING-AI system can situate the generated animations in the
space and temporally smooth them for a seamless user experience.
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Figure 22: We showcase more examples of humanoid animation contextualized by CARING-AI, (a) Walk to the chair and
sit down, (b) Walk to the sink, lean in, and wash hands thoroughly, and (c) do a a sloppy cartwheel around the chair. All
animations are generated by prompting the CARING-AI with text, scanning the environment to mark the object, and passing
user trajectories to the generative model.
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