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Figure 1. Given sequences of masked RGB and depth images, prior works (a) and (b) can train a 3D NeRF of the scene with the masked
region inpainted. While showing promising visual fidelity in rendered novel views, the occluded region is not faithfully reconstructed due
to limited prior information. E.g. the rendered bench extends further than that in the groundtruth (d). Our method (c) incorporates and
propagates the limited information to multi-view updates of the NeRF and achieves a more faithful reconstruction of the groundtruth.

Abstract

With Neural Radiance Fields (NeRFs) arising as a pow-
erful 3D representation, research has investigated its var-
ious downstream tasks, including inpainting NeRFs with
2D images. Despite successful efforts addressing the view

consistency and geometry quality, prior methods yet suffer
from occlusion in NeRF inpainting tasks, where 2D prior is
severely limited in forming a faithful reconstruction of the
scene to inpaint.

To address this, we propose a novel approach that en-
ables cross-view information sharing during knowledge dis-
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tillation from a diffusion model, effectively propagating
occluded information across limited views. Additionally,
to align the distillation direction across multiple sampled
views, we apply a grid-based denoising strategy and in-
corporate additional rendered views to enhance cross-view
consistency. To assess our approach’s capability of han-
dling occlusion cases, we construct a dataset consisting
of challenging scenes with severe occlusion, in addition to
existing datasets. Compared with baseline methods, our
method demonstrates better performance in cross-view con-
sistency and faithfulness in reconstruction, while preserving
high rendering quality and fidelity.

1. Introduction
Neural Radiance Fields (NeRFs) [33] have emerged as a
revolutionary approach to 3D scene representation, show-
casing high performance in novel view synthesis. Recent
research has explored diverse NeRF applications across do-
mains, including Augmented and Virtual Reality, game de-
velopment, and computer-aided design. Among all, a chal-
lenging task is to inpaint a 3D NeRF scene, i.e. to remove
an undesired area and complete the area with visually coher-
ent and geometrically plausible content that can be rendered
consistently across multiple views.

Inpainting 3D NeRF scenes presents significant chal-
lenges. First, training a NeRF requires 2D images from
multiple viewpoints with consistent inpainting to minimize
artifacts and enhance visual realism. Prior approaches ad-
dress this by focusing on the consistency of 2D inpainted
images or incorporating consistent implicit knowledge dis-
tillation from diffusion-based 2D inpainting models, such
as LaMa [35, 51, 56]. Alternatively, diffusion models have
also gained attention as the 2D inpainter to generate 2d in-
painted images [24, 53, 55]. In addition to using explicit
2D inpainting, some prior works utilize Score Distillation
Sampling (SDS) [38] to distill generative prior from diffu-
sion models for multiple views [6, 39, 53]. Despite achiev-
ing breakthroughs in rendering quality and multiview con-
sistency, these methods remain challenged by occlusions in
3D NeRF inpainting, where the areas to inpaint are often
obscured by objects to be removed, resulting in inconsis-
tent 2D distillation or explicit inpainting over the occluded
area across the views. Such occlusions limit available prior
information about the 3D scene, leading to incomplete or
unfaithful reconstructions, as shown in Fig. 1.

This work addresses the challenge of faithfully recon-
structing occluded regions by leveraging information from
the limited numbers of occluded views to infer constrained
scene priors. Our approach utilizes multi-view information
to guide the inpainting direction, resulting in consistent and
faithful reconstructions of the original scenes without com-
promising rendering quality.

To this end, we present Occlude-NeRF, a novel approach

to mitigate the occlusion challenge in 3D NeRF Inpaint-
ing while ensuring 3D consistency across multiple views.
Our method uses RGB and Depth images with correspond-
ing binary masks marking inpainted regions as inputs. We
first train a NeRF on the masked images to reconstruct the
background. Meanwhile, to inpaint the masked regions, we
followed MVIP-NeRF [6], using an SDS training scheme
to obtain inpainting guidance from an off-the-shelf diffu-
sion model [40]. To incorporate information from partially
unoccluded views, we apply Collaborative Score Distilla-
tion Sampling (CDS) [20], which smooths the gradient up-
date with information from other views and propagates the
guidance among the views. To maximize information shar-
ing among the views, we design a reference-view paradigm
during training. We render two sets of views, with one
used for loss back-propagation and the other only leveraged
as the reference with no gradient computation. To further
ensure consistency among multiple views during one dis-
tillation step, we applied a grid-denoising pattern in our
noise prediction step, inspired by similar findings of prior
works [1, 55]. By comparison with baseline methods and
ablations of our features, we demonstrate how our method
handles the occlusion challenge in 3D NeRF inpainting
tasks. We propose a novel approach to seamlessly and faith-
fully inpainting severely occluded 3D scenes. Our code and
dataset will be publicly available on GitHub. Our contribu-
tions are listed as follows:
• A modified CDS approach with multi-view information

sharing in 3D NeRF inpainting task based on diffusion
models, to mitigate the occlusion in inpainting areas.

• A grid-denoising pattern during score distillation to visu-
ally prompt the diffusion model to denoise towards con-
sistent inpainting of distinct viewpoints.

• A reference-view training paradigm to increase the cross-
view information sharing during NeRF training.

To assess the efficacy and performance of our method, in
addition to existing datasets [32, 35], we construct
• A novel and challenging dataset for 3D NeRF inpainting,

featuring scenes where the regions to inpaint suffer from
occlusion and prior information for inpainting is limited.

2. Related Work

2.1. NeRF Inpainting
NeRF, or Neural Radiance Fields [33], have emerged as
powerful representations for synthesizing novel views of
complex 3D scenes with high fidelity. One potential use
case of NeRFs is editing or inpainting a scene [57, 59],
which involves filling in or reconstructing missing or cor-
rupted regions to align seamlessly with the context.

NeRF editing can be done by adjusting the color and
shape codes [27] supervised by priors from other mod-
els [11, 34, 52]. Inpainting, however, requires more than
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straightforward scene editing; it necessitates that inpainted
regions visually and geometrically integrate with the orig-
inal scene. To tackle these challenges, previous methods
have emphasized generating consistent 2D inpainted im-
ages [5, 9, 36, 51, 58] to guide NeRF optimization or train-
ing. Prior methods such as NeRF-In [25], SPIn-NeRF [35],
Liu et. al. [28] and Remove-NeRF [56] approach this prob-
lem by inpainting 2D images with a 2D inpainter [5, 40] and
constrain the NeRF training with both inpainted 2D images
and the 3D consistency among them.

The advent of diffusion models has significantly ad-
vanced 2D inpainting capabilities. Later methods adopt
diffusion models as their 2D inpainters while incorporat-
ing 3D constraints into the inpainting process, such as vi-
sual prompting (NeRFiller [55]), fine-tuning and adver-
sarial training (MALD-NeRF [24]), and 3D self-attention
among views (CAT3D [10]).

Despite these advancements, methods that rely solely on
2D inpainted images face challenges in achieving complete
geometry and multi-view consistency due to variations in
2D inpainting. MVIP-NeRF [10] addresses this limitation
by incorporating SDS loss as a multi-view rendering loss,
guiding NeRF training with both visual and geometric cues.
This approach has also been utilized in object-level editing
[61] and scene-level inpainting [39].

However, existing methods often struggle when severe
occlusion is present in the scene and 2D priors provide lim-
ited information about the inpainted regions, complicating
faithful scene reconstruction. Methods like NeRF-W [31]
and Ha-NeRF [7] can remove transient objects from NeRF
that occlude the area of interest but are less effective for
static objects. Zhu et. al. [63] proposed a method to remove
the occluding static object from the scene. However, their
method is constrained by the presumption that the occlud-
ing object is closer than the background in the scene, while
our Occlude-NeRF presents a generalized solution with no
such constraints.

Occlude-NeRF builds on the use of SDS loss in NeRF in-
painting, focusing specifically on addressing the challenges
posed by occlusion. Specifically, we aim to inpaint and re-
construct the 3D scenes faithfully to the original scenes by
enabling information sharing and aligning the distillation
direction in SDS.

2.2. SDS with Diffusion Models
Diffusion models [8, 16, 48, 49] refine samples by progres-
sive denoising from noise using a learned denoising process
to approximate the target data distribution. With their abil-
ity to model complex data distributions starting from simple
ones, such as Gaussian distributions, diffusion models have
become the de facto state-of-the-art for image generation.

Beyond sampling in the image space, diffusion models
have also been applied to 3D parameter space sampling.

DreamFusion [38] first introduced the framework of Score
Distillation Sampling (SDS), which optimizes parameter-
ized models, such as differentiable image generators like
NeRF or 3D Gaussian Splatting (3DGS) [19], by distill-
ing rich 2D priors from a pre-trained diffusion model to
guide the image generator. SDS has liberated research in
3D vision from the constraints of expensive 3D training
data and inspired numerous variants aimed at tackling dif-
ferent 3D challenges [13, 20, 54, 62, 65], such as enhanc-
ing gradient clarity during sampling [13], ensuring multi-
view consistency [65]. Among all, Collaborative Score Dis-
tillation (CDS) [20] facilitates consistent visual synthesis
by constraining a smooth vector function within a Repro-
ducing Kernel Hilbert Space (RKHS) while approximat-
ing a target distribution through Stein Variational Gradi-
ent Descent [26]. While CDS has primarily been applied
to panorama images, video, and 3D scene generation, our
work extends its capability for 3D scene inpainting tasks by
deriving a parameter update paradigm that enhances multi-
view information sharing.

3. Preliminary
3.1. Neural Radiance Fields (NeRF)
Neural Radiance Fields (NeRF) provide a continuous and
differentiable method for representing 3D scenes using a
neural network. NeRF parameterizes the scene as a volu-
metric field that maps a 3D position and a viewing direction
to color and density values. Formally, NeRF can be rep-
resented as a function: Fθ(x,d) = (c, σ), where x ∈ R3

denotes a point in 3D space, d ∈ R2 represents the view-
ing direction, c ∈ R3 is the RGB color at the queried point,
σ ∈ R+ is the volume density, θ indicates the learnable
parameters of the network.

NeRF employs volume rendering to synthesize im-
ages from this 3D representation. The color observed
along a camera ray r(t) = o + td, where o is
the camera origin and d is the direction, is computed
as:C(r) =

∫ tf
tn

T (t)σ(r(t))c(r(t),d) dt, where tn and tf
denote the near and far bounds along the ray, T (t) =

exp
(
−
∫ t

tn
σ(r(s)) ds

)
represents the accumulated trans-

mittance from tn up to point t, describing the probability
that the ray has not been occluded.

3.2. Score Distillation Sampling
SDS is an alternative sample generation method proposed
by Poole et al. [38]. By distilling the knowledge from a 2D
text-to-image model, usually a pre-trained diffusion model,
SDS optimizes a differentiable image generator (e.g. NeRF
or 3DGS) towards a set of 3D parameters that renders high-
fidelity images.

Let x = g(θ) be an image rendered by a differentiable
generator g parameterized by θ. SDS minimizes the density
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Figure 2. The overall workflow. At each iteration, our method takes masked RGB and depth images as input and back-propagates the
pixel-wise loss in the unmasked RGB and depth to reconstruct the background (Eq. (4)). For the masked regions, we render a set of
training views and a set of reference views, respectively. For the reference views, the gradients are disabled. We randomly sample from
the union of the two sets and encode grids of latents, which are then added to a grid of Gaussian noise. We pass the grids to the diffusion
model conditioned on a textual prompt describing the scene and obtain a masked prediction of the noise. We then compute a collaborative
multi-view loss (Eq. (8)) with a multi-view kernel computed from the training set, assessing how much information to share among the
training views. We apply a similar geometry SDS loss as in [6] (Eq. (5)). Note that in addition to the masked loss in the figure, we compute
the pixel-wise losses in unmasked RGB and depth renderings as well. All losses are backpropagated to optimize the NeRF.

distillation loss [37], which is the KL divergence between
the posterior of x and the text-conditional density pωϕ :

L(θ;x) = Et,ϵ[αt/σtDKL(q(xt|x)||pωϕ(xt; y, t))] (1)

where t is the denoising timestep and y is the embedded
textual prompt. αt is the scale and σt is the noise variance
at t, together defining the noise scheduling. To update θ,
SDS computes the gradient of the loss by:

∇θL(θ;x) = Et,ϵ[w(t)(ϵ
ω
ϕ(xt; y, t)− ϵ)]

∂x

∂θ
) (2)

where w(t) is a weighting function. Derived from SDS,
CDS [20] aims to update a set of parameters {θi}Ni=1 that
parameterize the image generator g for the images x(i) =
g(θi). CDS solves the minimization of distillation loss
in Equation 1 by using Stein Variational Gradient De-
scent (SVGD) [26] in order to update each θi synchronously
within the set {θi}Ni=1:

∇θiL(θi;x) =
w(t)

N

N∑
j=1

(k(x
(j)
t ,x

(i)
t )(ϵωϕ(x

(i)
t ; y, t)− ϵ)

+∇
x
(j)
t
k(x

(j)
t ,x

(i)
t ))

∂x(i)

∂θi
) (3)

where k(, ) : RD × RD → R+ is a positive definite
kernel corresponding to a RKHS.

4. Methodology
In this section, we present our proposed method for incor-
porating multi-view information to address the challenge of
occlusion in 3D NeRF inpainting.

Our pipeline is illustrated in Fig. 2. Given a set of
RGB images of a scene, corresponding depth images, cam-
era poses, and masks specifying regions to inpaint, our ap-
proach trains a NeRF representation of the scene. The ob-
jective is to ensure that the trained NeRF can render novel
views with the masked regions consistently inpainted in 3D
space. For the unmasked background, we train the NeRF
with pixel-wise color and depth reconstruction loss:
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Lbg = λ1||x̂(i) − x̄(i)||22 + λ2||x̂(i)
d − x̄

(i)
d ||22 (4)

where x̄(i) and x̄
(i)
d are the masked groundtruth RGB and

depth map, and x̂(i) and x̂
(i)
d are the rendered RGB and

depth map, with λ1, λ2 being the corresponding weights.
For the masked area, we apply our proposed method to

distill RGB prior from a diffusion model to address the oc-
clusion problem in the color space (Eq. (8)). For geometry
supervision of the NeRFs, we perform vanilla SDS for nor-
mal map prior, following MVIP-NeRF [6]:

∇θLgeo(θ;n) = w(t)(ϵωϕ(zt; y, t)− ϵ)
∂z

∂n

∂n

∂θ
(5)

where n is the normal map computed from the rendered
depth map. Note that both the geometry and the collabora-
tive losses and noise predictions are computed only within
the masked regions. We also explore guiding geometry with
collaborative losses and report the less-satisfactory results
in Supplementary Sec. 9.3. In the following subsections,
we go through the design of our collaborative multi-view
loss. Specifically, we employ a modified version of CDS to
collectively update the NeRF parameters using information
shared across a subset of views (Sec. 4.1). We further in-
troduce reference views for collaborative knowledge distil-
lation over more samples (Sec. 4.3). Finally, we implement
a grid-based denoising strategy to enhance cross-view con-
sistency in distillation (Sec. 4.2) and fine-tune the inpainting
diffusion model for each scene to ensure visually consistent
priors (Sec. 4.4).

…

…

…
(a) Majority of Views

with Occlusion
(b) Limited Number of Samples

with Key Information

…

…

…

Figure 3. Illustration of the occlusion challenge in NeRF inpaint-
ing. In the training data, most views are occluded and only a few
views have key information for reconstructing the occluded area.
E.g., the armrest, the pole’s shape, and the monitor’s edge.

4.1. Multi-view CDS
We have witnessed how prior methods fail when the training
data has limited information about the area to inpaint due to
occlusion. The core of the challenge, as shown in Fig. 3, is
to extract and propagate faithful information from the lim-
ited given views to the parameter updating throughout the
NeRF training process.

To tackle this challenge, we aim to train the NeRF pro-
gressively with its parameters updated with consideration of
multiple randomly selected training views, so that the key
information can be extracted and propagated. To do this,
we apply a modified version of CDS (Eq. (3)), where we
adopt a radial basis function (RBF) as the kernel:

k(x,x′) = exp(− 1

h
||x− x′||22) (6)

and denoise multiple views rendered from the NeRF to cal-
culate the distillation loss, starting from:

∇θL(θ;x) =
w(t)

N

N∑
i=1

N∑
j=1

(∇
z
(j)
t
k(z

(j)
t , z

(i)
t )

+ k(z
(j)
t , z

(i)
t )(ϵωϕ(z

(i)
t ; y,m(i), t)− ϵ))

∂z(i)

∂x(i)

∂x(i)

∂θ
(7)

where z(i) is the encoded latent of x(i) by a VAE [21]. ϵ
is the scheduled noise and ϵωϕ is the predicted noise given

the noised latent z(i)t at t. mi is the concatenation of the
masks and unmasked image latent corresponding to x(i).
Meanwhile, x(i) and x(j) are from the same set of rendered
views during each update, where x(i) is the view to back-
propagate from and x(j)s are the other views rendered at
current iteration. We discuss how the first and the second
terms spread out the influence of each view and prevent the
updates from collapsing into a single mode of target distri-
bution in Supplementary Sec. 7.

4.2. Grid-based Denoising

As many prior works have pointed out, distilling or training
from individually inpainted 2D images results in inconsis-
tent 2D appearance and artifacts in the 3D representations,
usually due to the texture shift [24] in the high-frequency
area or slight differences in the condition (the background to
inpaint) [6, 55]. Previous SDS method [6] updates multiple
views together with a sum over the distillation loss at each
update, which overlooks the directional difference among
the noise prediction of each view and still results in blurri-
ness and artifacts, as shown in Fig. 4.

On the contrary, we incorporate the idea of visual
prompting that has demonstrated good performance in 2D
image space [1, 55] with our multi-view CDS. Specifically,
at each update, instead of denoising one rendered image at
a time, we randomly select multiple rendered training views
and pile them into a grid of images. This grid of images is
denoised as a single input, resulting in a corresponding grid
of noise prediction, which is ungridded into corresponding
noise predictions of each image.

Formally, we incorporate this method into Eq. (7):
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View 1

View 2

View 3

MVIP-NeRF Ours w/o GD Ours w/ GD GTTraining Views

Figure 4. Illustration of the effect of normal denoising and grid-
based denoising in distillation. In MVIP-NeRF, vanilla SDS de-
noising cannot form a consistent denoising direction for the distil-
lation, resulting in blurriness and artifacts. With Grid-based De-
noising in our method, we observe correct base locations of the
pole, reduced artifacts, and clearer inpainting from multiple views.

∇θL(θ;x) =
w(t)

N

N∑
i=1

N∑
j=1

(∇
z
(j)
t
k(z

(j)
t , z

(i)
t ) + k(z

(j)
t , z

(i)
t )

(ϵ̂ωϕ(z
(i)
t ; {z(s)t }Ss=1, y,m

({s}+i)t)− ϵ))
∂z(i)

∂x(i)

∂x(i)

∂θ
(8)

where {z(s)t }Ss=1 is a subset from the current rendered
views randomly selected to form a grid with z(i) and
m({s}+i) is the set of concatenations of corresponding
masks and masked image latent. ϵ̂ωϕ is the proposed grid-
based noise prediction, which is sequentially composed of,
(1) a grid operation, (2) a regular noise prediction, and (3)
an ungrid operation, to obtain noise predictions correspond-
ing to the input views. For N rendered views, we shuffle
them, perform grid-based denoising for M times, and take
the average over the M noise predictions for each view. Let
G and G−1 be the grid and ungrid operation, respectively:

G−1(ϵωϕ(G(z
(i)
t ,{z(s)t }Ss=1); y,G(m({k}+i)), t))

= {ϵ̄(i), {ϵ̄(s)}Ss=1} (9)

where {ϵ̄(i), {ϵ̄(s)}Ss=1} are the predicted noises of z(i)t and
{z(s)t }Ss=1 respectively. In short, grid-based denoising treats
a grid of images as one, denoises them together, and predicts
the noises correspondingly, resulting in consistent denois-
ing directions within the set, as shown in Fig. 4.

To this end, we obtain the grid-based noise prediction
w.r.t. the ith rendered view:

ϵ̂ωϕ(z
(i)
t ; {z(s)t }, y,m({s}+i)t) = ϵ̄(i) (10)

4.3. Reference Views Updating
So far, we have introduced two major techniques in our
method that address knowledge sharing across multiple
views to enhance occluded reconstruction and cross-view

View 1

View 2

View 3

w/o Ref. Views w/ Ref. Views w/ Ref. Viewsw/o Ref. Views

Figure 5. With Reference Views applied in the training process
(bottom row), the NeRF learns to render the masked region with
more information globally from the data, as compared to incorrect
inpainting while rendering a smaller set of training views only (e.g.
the hallucination of the stapler in the left scene or the extension of
the bench’s corner in the right scene).

consistency. As shown in Eq. (8), both techniques distill
knowledge from multiple rendered views to the NeRF. To
maximize this knowledge distillation across multiple views,
we propose a training paradigm with Reference Views.
Specifically, during each iteration, we rendered a set of
training views, Vtrain, to backpropagate the loss to train the
NeRF and another set of reference views, Vref , the gradient
of which will not be calculated, to provide extra information
in both CDS and Grid-denoising. In Eq. (8), the kernel will
be calculated within Vtrain, i.e., x(i),x(j) ∈ Vtrain. Mean-
while, grids will be formed by images from Vtrain ∪ Vref ,
i.e. {z(s)t }Ss=1 ⊂ (Vtrain ∪ Vref ).

We illustrate how training with Reference Views en-
hances the consistency and information sharing qualita-
tively in Fig. 5 and quantitatively in our ablation studies.

4.4. Per-scene Fine-tuning

As pointed out by prior works [24], applying latent diffu-
sion models to real-world content such as NeRF is usually
challenged from converging to a crisp and deterministic ge-
ometry and texture, due to the high diversity of synthetic
content from diffusion models. In pursuit of a more realistic
and blending-in convergence of the inpainting, we fine-tune
the diffusion model for each scene individually. Specifi-
cally, we choose a fixed text token for each scene and apply
LoRA [17] to fine-tune the U-Net of the diffusion model.
Each training sample is generated by randomly masking a
view from the training views with one rectangle or one cir-
cle (p = 0.5 each), with the masked region being the ground
truth. We utilize prior-preservation loss [41] and MSE to su-
pervise the learning. To avoid the model learning patterns
from the area we aim to inpaint in NeRF, we mask the train-
ing views with the original masks for NeRF training and set
the loss within to zero during fine-tuning.
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View 1

View 2

View 3

View 4

View 5

View 6

Occlusion GT Ours MVIP SPIn+LaMa SPIn+LDM

Figure 6. Visualization of qualitative results. For scenes that do not have much occlusion (View 1&2, the armrest is visible in most views),
our method and the baseline methods can render similarly good novel views in terms of quality and fidelity. When challenged with severe
occlusion (View 3-6), our method excels. Specifically, while baseline methods might render correctly in the views where occlusion is not
severe, they cannot propagate the information to other views. For example, MVIP can correctly render the base of the pole in View 4, but
it cannot render a consistent base in View 3. During distillation, such inconsistency is propagated and results in artifacts and blurriness in
both views. Similar examples can be found in View 5&6 (incorrect positions of the trash bin). One limitation is that like prior methods,
our method cannot remove the shadow.

SPIn-NeRF Occlude-NeRF

PSNR ↑ LPIPS ↓ L2 ↓ SSIM ↑ Corrs. ↑ PSNR ↑ LPIPS ↓ L2 ↓ SSIM ↑ Corrs. ↑
SPIn-NeRF+LaMa 15.992 0.284 0.287 0.416 73.080 14.154 0.321 0.369 0.619 37.483
SPIn-NeRF+LDM 16.162 0.298 0.286 0.408 79.640 14.107 0.284 0.338 0.615 47.442
MVIP-NeRF 16.080 0.404 0.302 0.449 76.515 13.872 0.387 0.345 0.601 37.023
Occlude-NeRF 16.177 0.355 0.290 0.461 86.715 15.447 0.346 0.314 0.680 50.928

Table 1. Evaluation results for different methods on the SPIn-NeRF and Occlude-NeRF datasets.

5. Experiments

5.1. Experiment Setup

5.1.1. Baseline Methods

We chose SPIn-NeRF [35] with LaMa [40], SPIn-NeRF
with Latent Diffusion Model (LDM), and MVIP-NeRF [6]
as our baseline methods for the 3D NeRF inpainting task.
The first two baseline methods are representatives of NeRF
inpainting with 2D inpainted images and MVIP-NeRF
serves as our baseline for SDS-based NeRF inpainting.

5.1.2. Datasets

We chose the SPIn-NeRF dataset and a subset of the
LLFF [32] dataset annotated (with masks and pseudo-depth
maps) by SPIn-NeRF [35] for our experiments, to assess the
algorithms’ performance in general cases where occlusion
occurs regularly. Additionally, we collected a novel dataset
for NeRF inpainting, named Occlude-NeRF. This dataset
was deliberately crafted with severe occlusion in the scene
to provide a rigorous test of the algorithms’ performance.
The detailed procedure for creating this dataset is provided
in Supplementary Sec. 8. In the SPIn-NeRF dataset, there
are 10 scenes each with 60 training views and 40 testing
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SPIn-NeRF Occlude-NeRF

PSNR ↑ LPIPS ↓ L2 ↓ SSIM ↑ Corrs. ↑ PSNR ↑ LPIPS ↓ L2 ↓ SSIM ↑ Corrs. ↑
(i) Ours w/o CDS 14.802 0.389 0.329 0.383 85.517 14.841 0.415 0.315 0.615 45.413
(ii) Ours w/o G.D. 15.684 0.367 0.297 0.449 81.498 14.774 0.361 0.324 0.628 42.888
(iii) Ours w/o Ref. 16.037 0.372 0.318 0.453 82.996 14.867 0.356 0.327 0.620 45.698
(iv) Ours w/o F.T. 15.562 0.358 0.305 0.449 83.844 13.661 0.397 0.368 0.602 46.412
(v) Ours (full) 16.177 0.355 0.290 0.461 86.715 15.447 0.346 0.314 0.680 50.928

Table 2. Evaluation results for different ablations of our methods on the SPIn-NeRF and Occlude-NeRF datasets.

views with their corresponding masks of an object to re-
move. The LLFF dataset contains varying numbers of im-
ages in 5 scenes. The Occlude-NeRF dataset contains 6
scenes, each with 60 training views and 40 testing views.

5.1.3. Implementation Details
We implement all baseline methods with hyperparameters
reported in their corresponding papers with a few excep-
tions. For SPIn-NeRF+LDM, we chose Stable Diffusion
2 (SD 2) Inpainting [40] as the 2D LDM inpainter. For
MVIP-NeRF, we chose SD 2 Inpainting as the diffusion
priors, for fair comparison. In the implementation of our
methods, we chose SD 2 Inpainting as the diffusion pri-
ors and set the Grid size to 2 × 2 for computation effi-
ciency. For the Reference-View training with the SPIn-
NeRF and the Occlude-NeRF dataset, we randomly select
12 training views (|Vtrain| = 12) and 48 reference views
(|Vref = 48|). For the LLFF dataset, we set (|Vtrain| = 4)
and (|Vref = 16|) due to the smaller sample sizes. More de-
tailed hyperparameters are listed in Supplementary Sec. 9.

5.2. Results

5.2.1. Metrics
In our experiments, we aim to assess the following at-
tributes: Quality and Fidelity: The visual characteris-
tics and realism of the images. Faithfulness: How accu-
rately the rendered image corresponds to the original scene.
Cross-view Consistency: How the rendered views remain
consistent across different viewpoints

We follow similar prior works [6, 24, 35] and evaluate
the quality with PSNR and fidelity with LPIPS [60]. We
apply L2 pixel-wise error and SSIM to assess the faithful-
ness of the synthesized views. We evaluate the cross-view
consistency of the rendered views with a Correspondence
Score (Corrs.), similar to [55], where we report the num-
bers of high-quality LoFTR [50] correspondences identi-
fied in 100 randomly sampled pairs of rendered images and
their ground truths. To balance the randomness, we pro-
ceed for 20 iterations and take the averages. Note that,
unlike some prior work, we do not evaluate with FID [14]
or KID [3], because the NeRF datasets are relatively small
with insufficient data points for stable calculation for such

metrics [2, 23, 29]. We only evaluate qualitatively on the
LLFF dataset due to the absence of removal ground truth.

5.2.2. V.S. Baselines
We conduct quantitative evaluations to compare the efficacy
of our method v.s. that of three baselines in 3D NeRF in-
painting tasks. Specifically, we focus on the quality of the
synthesized views and their faithfulness in reconstructing
the original scenes. The results are reported in Tab. 1. Fur-
ther visual comparisons are illustrated in Fig. 6.

From the quantitative results, we observe that our
method achieves the highest SSIM and Corrs. on both
datasets, demonstrating a stronger ability of structural
preservation, and cross-view consistency. Both SPIn-NeRF
methods yield lower LPIPS scores, which can be attributed
to the minimization of LPIPS distance between the inpaint-
ing and rendering in their methods. We also see that on the
SPIn-NeRF dataset, where there is not much occlusion, our
method yields a close but slightly more L2 distance. While
on the Occlude-NeRF dataset, where occlusion is severe
in the scenes, our method outperforms all baseline meth-
ods in L2, SSIM, and Corrs, which indicates better consis-
tency and faithfulness. Such results demonstrate that our
method excels in tackling severely occluded 3D inpainting
tasks while preserving satisfactory performance in image
quality and fidelity but compromising a bit of perceptual
coherency. More qualitative discussions can be found in
Supplementary Sec. 10.

5.2.3. Ablation Studies
We conduct ablation studies on our method to investigate
the effect of each of our modules. We test the ablations
on the SPIn-NeRF dataset and the Occlude-NeRF dataset.
Specifically, we start with the full method and ablate (i)
CDS, (ii) Grid-based Denoising, (iii) Reference Views, and
(iv) Per-scene Fine-tuning, respectively. The quantitative
results are reported in Tab. 2.

Particularly, comparing ours with (i), we identify a sig-
nificant drop in L2 and SSIM performance without CDS.
Additionally, we see close Corrs. scores on the SPIn-NeRF
dataset but a tremendous improvement of Corrs scores on
the Occlude-NeRF dataset. This affirms the efficacy of CDS
in faithful reconstructions across the views, especially in
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occlusion cases. Showing by the differences between (v)
and (iii), the use of Reference views further enhances the
efficacy of CDS in faithfulness with slightly improved im-
age quality and fidelity. A significant drop in Corrs. (ii)
denoising demonstrates that Grid-based denoising greatly
contributes to the consistency among the views. As also
suggested by the drop in PSNR and LPIPS scores of (iv)
on both datasets, we conclude that per-scene fine-tuning en-
hances the overall quality of the view synthesis.

6. Conclusion
We introduce Occlude-NeRF, a novel approach to inpaint
a 3D NeRF scene. Our method tackles the occlusion
challenge unaddressed by prior work, where most views
are occluded leaving a limited amount of information
about the area to inpaint. Specifically, we propose a
multi-view version of CDS, a Grid-based denoising pat-
tern, and a Reference-view training paradigm to enable
information sharing among the views. We also apply
per-scene fine-tuning to enhance the rendering quality
and fidelity. To assess Occlude-NeRF’s performance in
occlusion cases, we construct a novel dataset with chal-
lenging occlusion. The major limitation of our methods
lies in the reconstruction of high-frequency regions due
to the averaging of multiple views during distillation,
which we further showcase in Supplementary Sec. 10.1.
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Süsstrunk. Innerf360: Text-guided 3d-consistent object in-
painting on 360-degree neural radiance fields. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12677–12686, 2024. 2

[54] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. Advances in Neural Information Processing Systems,
36, 2024. 3

[55] Ethan Weber, Aleksander Holynski, Varun Jampani, Saurabh
Saxena, Noah Snavely, Abhishek Kar, and Angjoo
Kanazawa. Nerfiller: Completing scenes via generative 3d
inpainting. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20731–
20741, 2024. 2, 3, 5, 8, 4

[56] Silvan Weder, Guillermo Garcia-Hernando, Aron Monsz-
part, Marc Pollefeys, Gabriel J Brostow, Michael Firman,
and Sara Vicente. Removing objects from neural radiance
fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 16528–16538,
2023. 2, 3

[57] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.
Learning object-compositional neural radiance field for ed-
itable scene rendering. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 13779–
13788, 2021. 2

[58] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative image inpainting with con-
textual attention. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 5505–5514,
2018. 3

[59] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing of
neural radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18353–18364, 2022. 2

[60] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 8

[61] Xingchen Zhou, Ying He, F Richard Yu, Jianqiang Li, and
You Li. Repaint-nerf: Nerf editting via semantic masks and
diffusion models. arXiv preprint arXiv:2306.05668, 2023. 3

[62] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Dis-
tilling view-conditioned diffusion for 3d reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12588–12597, 2023. 3

[63] Chengxuan Zhu, Renjie Wan, Yunkai Tang, and Boxin Shi.
Occlusion-free scene recovery via neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 20722–20731, 2023. 3

[64] Junzhe Zhu, Peiye Zhuang, and Sanmi Koyejo. Hifa: High-
fidelity text-to-3d generation with advanced diffusion guid-
ance. arXiv preprint arXiv:2305.18766, 2023. 5

[65] Zixin Zou, Weihao Cheng, Yan-Pei Cao, Shi-Sheng Huang,
Ying Shan, and Song-Hai Zhang. Sparse3d: Distill-
ing multiview-consistent diffusion for object reconstruction
from sparse views. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 7900–7908, 2024. 3

11



OccludeNeRF: Geometric-aware 3D Scene Inpainting with Collaborative Score
Distillation in NeRF

Supplementary Material

7. Analysis on Multi-view CDS
We have proposed the core distillation sampling strategy in
our main manuscript, namely Equation (8). In this Supple-
mentary section, we discuss how Equation (8) helps propa-
gate the information from limited views to the collaborative
update of the NeRF parameters.

7.1. Kernel-Weighted Noise Prediction
7.1.1. Noise Prediction
For each view i, the noise prediction ϵ̂(i) is computed as a
kernel-weighted combination of noise predictions from all
views:

ϵ̂(i) =
1

N

N∑
j=1

k(z(i), z(j))ϵ(j) (11)

where:
• ϵ(j) is the noise prediction for view j.
• k(z(i), z(j)) is the kernel function, which measures simi-

larity between the latents z(i) and z(j).
The kernel k(z(i), z(j)) ensures that:

• Views j are from the rendered set as view i. Those from
views j with relevant information (e.g., visible occluded
areas) contribute more strongly to the noise prediction ϵ̂(i)

of view i.
• Occluded view i to incorporate details from views j

where the occluded area is visible.

7.2. Loss Function and Gradient
7.2.1. Loss Function
The loss for each view i is defined as:

L(i) = ϵ̂(i) − ϵ
(i)
gt (12)

where ϵ
(i)
gt is the ground-truth noise for view i. Substituting

ϵ̂(i), the loss becomes:

L(i) =
1

N

N∑
j=1

k(z(i), z(j))ϵ(j) − ϵ
(i)
gt (13)

7.2.2. Gradient of the Loss
The gradient of this loss with respect to the latent z(i) is:

∇z(i)L(i) =
1

N

N∑
j=1

∇z(i)

(
k(z(i), z(j))

)
ϵ(j) (14)

For a Gaussian RBF kernel with scale h:

k(z(i), z(j)) = exp

(
− 1

h
∥z(i) − z(j)∥22

)
(15)

the gradient is:

∇z(i)k(z(i), z(j)) = − 2

h
(z(i) − z(j))k(z(i), z(j)) (16)

Substituting this into ∇z(i)L(i), we get:

∇z(i)L(i) =
1

N

N∑
j=1

(
− 2

h
(z(i) − z(j))k(z(i), z(j))

)
ϵ(j)

(17)

This gradient shows how information propagates be-
tween views i and j, with the kernel k(z(i), z(j)) modulat-
ing the strength of interaction.

7.3. NeRF Parameter Updates
7.3.1. Gradient Propagation
The latent updates are propagated to the NeRF parameters
θ through backpropagation. The total gradient for θ is:

∇θL =

N∑
i=1

∇θL
(i) (18)

Using the chain rule:

∇θL
(i) = ∇z(i)L(i) · ∇θz

(i) (19)

Substituting ∇z(i)L(i) from above, we get:

∇θL =

N∑
i=1

∇θz
(i)· 1

N

N∑
j=1

(
− 2

h
(z(i) − z(j))k(z(i), z(j))

)
ϵ(j)

 (20)

7.4. Role of the Two Terms in the Kernel Update
The kernel update involves two key terms:

∇z(i)k(z(i), z(j)) = − 2

h
(z(i) − z(j))k(z(i), z(j)) (21)

and:

k(z(i), z(j)). (22)
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Figure 7. Illustration of the effect of our CDS kernel in one iteration. The heatmap of the kernel is on the left. The warmer the color, the
higher the kernel value. We can see the corresponding views on the right-hand side. The closer (in the latent space) the views are, the higher
the correspondence value in the kernel (View 10 & 12). Meanwhile, views with further distance but containing important information can
also be related to the update (e.g. the kernel has a relatively high value between (View 8 & 10). In this way, the information about the
occluded area (e.g. View 8, where the hole of the left trash bin is visible) can be propagated to the update of other views (e.g. View 12,
where the hole is completely occluded).

First Term: Gradient of the Kernel (∇z(i)k(z(i), z(j)))
This term serves several critical purposes in the kernel-
based updates:

1. Repulsive Force to Maintain Diversity:

∇z(i)k(z(i), z(j)) = − 2

h
(z(i) − z(j))k(z(i), z(j)) (23)

The term (z(i)−z(j)) computes the directional vector point-
ing from z(j) to z(i). The negative sign ensures that the gra-
dient drives z(i) away from z(j), creating a repulsive effect
between similar latents. This repulsion prevents all latents
from collapsing into a single representation, ensuring suffi-
cient diversity among the latent representations for different
views.

2. Propagation of Occlusion Information: When a
view j contains visible information about an occluded area,
its latent z(j) contributes gradients to the update of z(i)

through this term:

∇z(i)L(i) =
1

N

N∑
j=1

∇z(i)k(z(i), z(j))ϵ(j). (24)

If z(j) is close to z(i), the kernel k(z(i), z(j)) will be large,
amplifying the influence of z(j) on z(i). This ensures that
visible details in z(j) are propagated into the occluded rep-
resentation z(i).

3. Modulation by Kernel Weight: The term
k(z(i), z(j)) modulates the strength of the gradient, en-
suring that only nearby latents significantly influence z(i).
Mathematically, the magnitude of the gradient is propor-
tional to the similarity between z(i) and z(j), as measured
by k(z(i), z(j)).

Second Term: Kernel Weight (k(z(i), z(j)))
This term determines how much influence view j has on
view i in the kernel-weighted noise prediction:

ϵ̂(i) =
1

N

N∑
j=1

k(z(i), z(j))ϵ(j). (25)

1. Weighted Contribution of Nearby Views: The ker-
nel k(z(i), z(j)) assigns higher weights to views j with sim-
ilar latents z(j) to z(i), ensuring that these views have a
stronger influence on the noise prediction for view i. This is
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Figure 8. Visualization of our customized dataset. For each scene, we set up an obstacle blocking an area and mask the obstacle for
inpainting tasks. We collect testing views and training views with RGB images and masks. We also generate the pseudo-depth maps
(visualized as the disparity maps) corresponding to each view.

particularly critical when z(j) contains visible information
about an occluded area in z(i), as the kernel amplifies the
contribution of z(j).

2. Occlusion-Aware Updates: For occluded areas, z(j)

from views where the occlusion is visible dominates the
noise prediction for z(i), effectively propagating informa-
tion about the occluded area across views:

ϵ̂(i) ≈
∑N

j k(z(i), z(j))ϵ(j)∑N
j k(z(i), z(j))

. (26)

This weighted update ensures that the occluded representa-
tion z(i) aligns with the visible views.

3. Locality of Influence: The kernel decays rapidly with
distance in the latent space:

k(z(i), z(j)) = exp

(
− 1

h
∥z(i) − z(j)∥22

)
. (27)

As ∥z(i) − z(j)∥ increases, k(z(i), z(j)) → 0, ensuring that
only nearby latents significantly influence the updates. In
this way, we avoid distillation of 2D prior from views that
are too far away, which may result in inconsistent 2D in-
painting results, as also pointed out by prior work [55].

Combined Functionality of the Two Terms
The combined effect of the two terms is as follows:

• The first term (∇z(i)k) ensures that information propa-
gates between views and prevents collapse by introducing
repulsive forces.

• The second term (k) amplifies contributions from rele-
vant views, particularly those with visible occluded areas,
ensuring effective information sharing.

Together, these terms propagate occlusion information
across views, align latent representations, and maintain di-
versity in the latent space, enabling robust NeRF training.

Why Occlusion Information Propagates to θ

1. Kernel-Based Weighting: The kernel k(z(i), z(j)) en-
sures that visible views j contribute more strongly to oc-
cluded views i, propagating occlusion details across the la-
tent space, as shown in Figure 7

2. Collaborative Updates to Latents: The gradient
∇z(i)k(z(i), z(j)) drives latent z(i) of occluded views to
align with z(j) of visible views.

3. Backpropagation to NeRF: The updated latents z(i)

are used to refine the NeRF parameters θ, enabling the
model to represent occluded areas consistently across all
views.
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8. Dataset Building
In this section, we introduce our procedure and details for
constructing the Occlude-NeRF dataset.

8.1. Scene Setup
We collected data from six scenes in total, with three in-
doors and three outdoors, as shown in Figure 8. We name
the three indoor scenes: Cabinet, Monitor, and Meeting
Room, and the three outdoor scenes: Bench, Trash Bin, and
Light Pole. The specific scene description is listed below:
• Cabinet: an office workspace with a symmetrical arrange-

ment of two cubicles on either side. Each cubicle includes
a white desk, a chair with a gray backrest, and an orange
seat cushion. A black trash bin is placed on top of a mo-
bile pedestal with an orange cushion. The black trash bin
is masked.

• Monitor: an office workspace with a white desk and a
cardboard box placed in the center. On the desk are two
Dell monitors (one visible and turned off), a black key-
board, and a desk lamp on the left. The cardboard box is
masked.

• Meeting Room: an indoor office meeting room with a
white conference table surrounded by teal office chairs.
On the table are various items, including a long cardboard
box, staplers, and a black organizer containing stationery
such as pens, highlighters, and sticky notes. The card-
board box is masked.

• Bench: a cardboard box placed on a silver metal bench in
an outdoor area. The bench is positioned next to a con-
crete planter filled with green shrubs and small rocks. The
cardboard box is masked.

• Trash Bin: two outdoor trash bins in front of a concrete
planter with green shrubs. The left bin is metallic with
vertical slits, and a black rectangular container is placed
on its circular opening. The right bin is smooth, gray, and
labeled ”Compost” with a green rim. The black container
is masked.

• Light Pole: a bright blue cooler placed on a concrete side-
walk, next to a metal pole and a neatly trimmed hedge.
The cooler is masked.

8.2. Data Collection
For each scene, we collect 60 training views and 40 test-
ing views. For each training view, we obtain a mask by
prompting a point at the object to mask, using the Segment
Anything Model (SAM) [22]. Each mask is dilated with a
3 × 3 kernel for 3 iterations. To obtain relatively accurate
camera pose estimations, we mark the objects’ location in
the scene with a marker, place the object to take one im-
age, and remove the object for another while the camera
remains static. In this way, we obtain a testing view with
and without the object in the scene. We then put the object
back according to the mark and move the camera for other

views. We conducted this procedure because we found prior
work’s [35] method for estimating camera poses resulted
in unstable accuracy since they use COLMAP [42, 43] to
perform structure from motion with images with and with-
out objects. Therefore, in our case, we obtain extra images
with objects for the testing views, so that we can estimate
the poses for both training views and testing views together.
We then obtain the pseudo depth maps for each view fol-
lowing SPIn-NeRF [35]. The collected dataset samples can
be found in Figure 8.

9. Hyperparameter Details
In this section, we elucidate the hyperparameters we have
used in our experiments, as well as some findings exploring
the hyperparameters.

9.1. Implementation
We implement our Occlude-NeRF method on 2 NVIDIA
H100 GPUs, trained for 10,000 iterations for each scene
with the Adam optimizer with a learning rate of 1e − 4
scheduled with a cosine annealing scheduler (max num-
ber of iterations: 50 and min learning rate:0). For the
distillation sampling, we follow prior work [6, 55] and
choose timesteps uniformly increasing with the training
from tmin = 0.02 to tmax = 0.98. For the classifier-free
guidance [15], we choose a uniform value for all scenes
to see the generalizability of our methods, in contrast to
MVIP-NeRF [6]. Specifically, we set:

ϵ̂ = ϵuncond + γ × (ϵtext − ϵuncond) (28)

where ϵ̂ is the final noise prediction, ϵuncond and ϵtext are
the noise prediction with no condition and conditioned by
text, respectively, and γ is the guidance scale, which we set
uniformly γ = 7.5. During training, the size of latent z is
set to 256×256 for collaborative distillation and 512×512
for geometry distillation due to GPU RAM limits. For each
iteration, we set the batch (of rays) size to 1024 and the
number of samples along the ray to 32. Additionally, we
set the number of samples for fine networks to 32. We test
with three different numbers of the Grid-based Denoising
M = 1, 4, 8 and choose M = 4 to balance performance
and training time. The textual prompts to diffusion models
are listed in Table 3:

9.2. Exploratory Study on Hyperparameters
In addition to the hyperparameter choices we have reported
above, we explore the hyperparameter space and report in-
teresting findings in this subsection.

9.2.1. Noise Scheduling
We test two noise scheduling methods. Namely, we first
implemented a random sampling schedule, where a random
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(a) Random Timestep Scheduling (b) Progressive Timestep Scheduling

Figure 9. Comparison between (a) random timestep scheduling and (b) progressive timestep scheduling. We can easily observe the better
convergence of shape and appearance of the latter.

noise timestep between tmin and tmax is chosen. We then
implemented a progressive sampling schedule similar to [6,
64]:

t = tmax − (tmax − tmin) ∗ iter/max iter) (29)

where iter is the current iteration number and max iter is
the total number of iterations.

Qualitatively, we found that the progressive sampling
schedule fosters convergence toward clearer and sharper in-
painting, as shown in Figure 9. This can be attributed to
the larger changes in the earlier stages to form the 3D rep-
resentations and smaller changes in the later stages, instead
of randomly changing the update scale mid-training, which
aligns with the similar findings in [55].

9.2.2. Randomization during Grid-based Denoising

We experimented with different numbers of times shuffling
during Grid-based Denoising, namely M = 1, 4, 8. Our
experiments qualitatively showed that 8 times of shuffling
yields fewer artifacts in the inpainted area, followed by
M = 4, and then M = 1, as shown in Figure 10. This
can be attributed to the averaging effect of the shuffling step
in our pipeline, where the influence of multiple views is
merged into one update of distillation. However, increasing
M by one means calling the U-Net for one iteration of de-
noising, which severely increases the training time. There-
fore, we made a trade-off between training efficiency and
performance by setting M = 4.

M=8

M=1

M=4

Figure 10. Comparison among different values of M . While
M = 8 yields the best visual results regarding the sharpness of
the inpainting. We made a trade-off between the computation cost
in the training phases and the performance and eventually chose
M = 4 for our experiment.
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Dataset Name Scenes Prompts

SPIn-NeRF

1 ”a stone park bench”

2 ”a wooden tree trunk on dirt”

3 ”a red fence”

4 ”stone stairs”

7 ”a grass ground”

9 ”a corner of a brick wall and a carpeted floor”

10 ”a wooden bench in front of a white fence”

12 ”grass ground”

Book ”a brick wall with an iron pipe”

Trash ”a brick wall”

Occlude-NeRF

Monitor ”a computer monitor on a white office desk”

Meeting Room ”a black stapler on a white office table”

Bench ”a silver metallic bench with slats and armrests”

Trash Bin ”a metallic garbage bin with a round opening”

Light Pole ”a metallic light pole next to a green ground plant”

Cabinet ”a white filing cabinet with an orange cushion on top,
next to a white wall”

LLFF

Fern ”plant and planter on dirt”

Fortress ”a wooden tabletop”

Horns ”glass windows and a white support pillar on carpet”

Orchids ”a conference room with black office chairs and brown
carpet”

Room ”green leaves of a plant”

Table 3. Textual prompts used for each scene in our experiments.

9.2.3. Qualitative Comparison with 3D-attention-based
SDS

Inspired by prior works on 3D-attention in Diffusion Mod-
els [4, 10, 47], we attempted 3D-attention in SDS in our
early trials. Specifically, we replaced the diffusion model
we used with Stable Video Diffusion (SVD) [4] and MV-
Dream (MVD) [47]. For SVD, we trained the NeRF with
SD2 for 3000 iterations to get the initial reconstruction of
the scene and then switched to SVD. During each iteration,
we rendered 14 views with the first one used as the refer-
ence and passed then 14 views as a batch to SVD and back-
propagated the distillation loss. For MVD, we disabled the
mask condition and passed four rendered views as well as
their camera poses as the conditions for the MVD model.

For both methods, the gradients are masked and only en-
abled in the masked area. Derived from text-to-image Sta-
ble Diffusion [40], SVD takes a sequence of images as input
and allows an additional channel in the input to the U-Net
by adding 3D attention layers across the time dimension to
compute the self-attention within the batch of input images.
Similarly, MVD utilizes 3D spatial attention to assess the
view consistency of the 3D generation from 2D. The pur-
pose of our trial is to investigate the possibility of directly
using such models off-the-shelf in our 3D inpainting tasks
to address cross-view consistency. The visual results are
shown in Figure 12. We found that, although efficient in
3D generation tasks, these models are not satisfactory with-
out being further modified and fine-tuned for 3d inpaint-
ing tasks, because they do not enable inpainting conditions
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(a) Collaborative Inpainting
of Normal Maps

(b) Final Disparity Map
w/ CDS Geometry

(c) Final Disparity Map
w/ Vanilla SDS Geometry

Figure 11. (a) Collaborative Inpainting with Grid-based denoising does not yield consistent inpainting. The top row is the masked normal
maps and the bottom row is the inpainted normal maps (normal maps of the bench scene in SPIn-NeRF). We observed inconsistent
inpainting results. Comparing the final results with Vanilla SDS geometry guidance (c) and CDS geometry guidance (b), we observed
increased artifacts in the latter.

where the masks and masked images are passed to the U-
Net to specify the area and the context to inpaint. As a re-
sult, the 3D generation diffusion models will be prompted to
generate 2D prior, which will change the entire image/view
rather than just the masked region. The resulting distillation
results do not constitute to a promising 3D inpainting even
if we constrain the gradient flow to only the masked region.

9.3. Vanilla Geometry SDS v.s. CDS Geometry SDS

As a major contribution of our method, we apply collabora-
tive SDS in the color space to tackle the occlusion prob-
lem in 3D inpainting. Yet, for the geometry SDS of a
NeRF scene, we only apply vanilla geometry SDS, where
we denoise a single normal map per iteration without col-
laboratively computing the cross-view loss. This is be-
cause, during the experiments, we found that CDS Geome-
try SDS does not yield consistent distillation in the geom-
etry space. The inconsistency among the different views
of normal maps easily leads to convergence into inpainting
with artifacts in the geometry space as shown in Figure 11.

As a result, we do not apply collaborative SDS to the
geometry space of our inpainting method. This can be
attributed to the priors in diffusion models being trained
mostly on large-scale datasets of natural RGB images
paired with textual descriptions (e.g., ”a mountain at sun-
set”), while normal maps are specialized data representing
surface orientations using encoded RGB values (usually in-
dicating x, y, z surface normals), which differ fundamen-

SVD

MVD

Ours

Figure 12. Qualitative comparison between 3D-attention-based
diffusion models (SVD & MVD) and our choice of SD. We ob-
serve that SVD does not converge to a sharp reconstruction. Mean-
while, MVD does not yield a correct or faithful reconstruction of
the scene.

tally from natural RGB images in structure and meaning.
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GT Ours MVIP SPIn+LaMa SPIn+LDM GT Ours MVIP SPIn+LaMa SPIn+LDM

(a)-1

(a)-2

(b)-1

(b)-2

(c)-1

(c)-2

(d)-1

(d)-2

(e)-1

(e)-2

(f)-1

(f)-2

(g)-1

(g)-2

(h)-1

(h)-2

(i)-1

(i)-2

(j)-1

(j)-2

Figure 13. More qualitative results from our experiments. We visualize only the masked region for comparisons. Note that for the LLFF
dataset ((h), (i), and (j)), there is no ground truth with the object removed. Thus we show the ground truths with objects instead. We
observed more faithful reconstructions of the true scenes with our method in severely occluded cases ((a), (b), (c), (f), (g)). We also
witness more cross-view consistency of our method compared to SPIn-NeRF-based methods ((f) and (j)). However, our method is limited
in reconstructing high-frequency texture regions in the scene ((d) and (e) the brick wall, (h) the orchid leaves, and (i) the table), which is a
common challenge in SDS-based methods.

10. Qualitative Results

In this section, we present more qualitative results and dis-
cuss the shortcomings of our Occlude-NeRF method.

As shown in Figure 13, our methods can faithfully re-
construct the occluded areas with limited information com-
pared to the baseline methods ( (a) the true edge of the stone
bench, (b) the root location of the trunk, (c) the shape of the
wall corner, (f) the edge of the monitor, and (g) the location
of the stapler). While being able to reconstruct the occluded
area, our method maintains satisfactory visual reconstruc-
tion in the cases where occlusion is not severe ((d) and (e)
the location of the pipe).

10.1. Limitation: High-frequency Region Recon-
struction

As prior works [24, 55] pointed out, recovering high-
frequency regions remains a common challenge for 3D gen-
erative methods like SDS. In this subsection, we showcase
Occlude-NeRF’s limitation in generating high-frequency
regions in Figure 13. Specifically, in scenes (d) and (e),
we observe that the brick wall texture in ours and MVIP’s
is blurred compared to that in SPIn-NeRF-based methods.
Similarly, in (c) the gray carpet is rendered with artifacts
with dot texture instead of the real texture of the carpet.
Moreover, the patterns of the orchid leaves in (h) and the
texture of the table in (i) are both blurred in ours and
MVIP’s, while being sharper and clearer in those in SPIn-
NeRF-based methods. This is attributed to the mechanism
of SDS-based methods. Repetitive updates in SDS will av-
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erage out the shape of high-frequency objects in the scene.
To tackle this problem, we anticipate future work introduc-
ing a more advanced noise scheduling mechanism, where
the shape of the reconstruction can be affirmed in the early
stages and sharpened in the later stages to avoid blurriness.

11. Ethical Concerns
The ethical concerns of our method primarily revolve
around its potential misuse and implications for privacy, au-
thenticity, and societal impact [44, 45]. Similar algorithms
have been applied to editing humanoid avatars [30, 46] and
objects [12, 18] in virtual environments. The capability of
this type of algorithm might be exploited to fabricate or
manipulate digital evidence, misrepresent physical spaces,
or breach privacy by reconstructing obscured or private ar-
eas without consent. Additionally, biases inherent in train-
ing datasets could lead to unfair or inaccurate reconstruc-
tions, potentially reinforcing stereotypes or producing mis-
leading results, this is an especially common downfall of
text-prompted generative AIs.
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